首页> 外文期刊>Geoscience and Remote Sensing, IEEE Transactions on >Endmember Extraction of Hyperspectral Remote Sensing Images Based on the Ant Colony Optimization (ACO) Algorithm
【24h】

Endmember Extraction of Hyperspectral Remote Sensing Images Based on the Ant Colony Optimization (ACO) Algorithm

机译:基于蚁群算法的高光谱遥感影像端元提取

获取原文
获取原文并翻译 | 示例

摘要

Spectral mixture analysis has been an important research topic in remote sensing applications, particularly for hyperspectral remote sensing data processing. On the basis of linear spectral mixture models, this paper applied directed and weighted graphs to describe the relationship between pixels. In particular, we transformed the endmember extraction problem in the decomposition of mixed pixels into an issue of optimization and built feasible solution space to evaluate the practical significance of the objective function, thereby establishing two ant colony optimization algorithms for endmember extraction. In addition to the detailed process of calculation, we also addressed the effects of different operating parameters on algorithm performance. Finally we designed two sets of simulation data experiments and one set of actual data experiments, and the results of those experiments prove that endmember extraction based on ant colony algorithms can avoid some defects of N-FINDR, VCA and other algorithms, improve the representation of endmembers for all image pixels, decrease the average value of root-mean-square error, and therefore achieve better endmember extraction results than the N-FINDR and VCA algorithms.
机译:光谱混合分析一直是遥感应用中的重要研究课题,特别是对于高光谱遥感数据处理。在线性光谱混合模型的基础上,应用有向图和加权图来描述像素之间的关系。特别地,我们将混合像素分解中的末端成员提取问题转化为一个优化问题,并建立了可行的解空间来评估目标函数的实际意义,从而建立了两种蚁群优化算法进行末端成员提取。除了详细的计算过程外,我们还讨论了不同操作参数对算法性能的影响。最后我们设计了两套模拟数据实验和一套实际数据实验,这些实验的结果证明,基于蚁群算法的末端成员提取可以避免N-FINDR,VCA等算法的某些缺陷,改善了算法的表示。所有图像像素的末端成员,减少了均方根误差的平均值,因此比N-FINDR和VCA算法获得更好的末端成员提取结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号