首页> 外文期刊>Geoscience and Remote Sensing, IEEE Transactions on >Nonlinear Unmixing of Hyperspectral Images Using a Generalized Bilinear Model
【24h】

Nonlinear Unmixing of Hyperspectral Images Using a Generalized Bilinear Model

机译:利用广义双线性模型对高光谱图像进行非线性分解

获取原文
获取原文并翻译 | 示例

摘要

Nonlinear models have recently shown interesting properties for spectral unmixing. This paper studies a generalized bilinear model and a hierarchical Bayesian algorithm for unmixing hyperspectral images. The proposed model is a generalization not only of the accepted linear mixing model but also of a bilinear model that has been recently introduced in the literature. Appropriate priors are chosen for its parameters to satisfy the positivity and sum-to-one constraints for the abundances. The joint posterior distribution of the unknown parameter vector is then derived. Unfortunately, this posterior is too complex to obtain analytical expressions of the standard Bayesian estimators. As a consequence, a Metropolis-within-Gibbs algorithm is proposed, which allows samples distributed according to this posterior to be generated and to estimate the unknown model parameters. The performance of the resulting unmixing strategy is evaluated via simulations conducted on synthetic and real data.
机译:非线性模型最近显示出有趣的光谱解混特性。本文研究了用于分解高光谱图像的广义双线性模型和分层贝叶斯算法。所提出的模型不仅是公认的线性混合模型的概括,而且还是文献中最近引入的双线性模型的概括。为它的参数选择适当的先验,以满足丰度的正和合一约束。然后得出未知参数向量的联合后验分布。不幸的是,该后验过于复杂,无法获得标准贝叶斯估计量的解析表达式。结果,提出了一种大都市内吉布斯算法,该算法允许生成根据该后验分布的样本并估计未知模型参数。通过对合成数据和真实数据进行的模拟,可以评估最终分解策略的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号