首页> 外文期刊>Geoscience and Remote Sensing, IEEE Transactions on >Hyperspectral Image Segmentation Using a New Bayesian Approach With Active Learning
【24h】

Hyperspectral Image Segmentation Using a New Bayesian Approach With Active Learning

机译:使用主动学习的新贝叶斯方法进行高光谱图像分割

获取原文
获取原文并翻译 | 示例

摘要

This paper introduces a new supervised Bayesian approach to hyperspectral image segmentation with active learning, which consists of two main steps. First, we use a multinomial logistic regression (MLR) model to learn the class posterior probability distributions. This is done by using a recently introduced logistic regression via splitting and augmented Lagrangian algorithm. Second, we use the information acquired in the previous step to segment the hyperspectral image using a multilevel logistic prior that encodes the spatial information. In order to reduce the cost of acquiring large training sets, active learning is performed based on the MLR posterior probabilities. Another contribution of this paper is the introduction of a new active sampling approach, called modified breaking ties, which is able to provide an unbiased sampling. Furthermore, we have implemented our proposed method in an efficient way. For instance, in order to obtain the time-consuming maximum a posteriori segmentation, we use the $alpha$-expansion min-cut-based integer optimization algorithm. The state-of-the-art performance of the proposed approach is illustrated using both simulated and real hyperspectral data sets in a number of experimental comparisons with recently introduced hyperspectral image analysis methods.
机译:本文介绍了一种主动学习的监督贝叶斯新方法,用于高光谱图像分割,该方法包括两个主要步骤。首先,我们使用多项式Lo​​gistic回归(MLR)模型来学习类后验概率分布。这是通过使用最近引入的通过拆分和增强拉格朗日算法进行的逻辑回归来完成的。其次,我们使用在上一步中获得的信息,通过对空间信息进行编码的多级逻辑先验来分割高光谱图像。为了减少获取大型训练集的成本,基于MLR后验概率执行主动学习。本文的另一项贡献是引入了一种新的主​​动采样方法,称为修正后的联系,该方法能够提供无偏采样。此外,我们以有效的方式实施了我们提出的方法。例如,为了获得费时的最大后验分割,我们使用了基于$ alpha $扩展最小割的整数优化算法。在模拟实验和实际高光谱数据集的基础上,利用最新引入的高光谱图像分析方法进行了多次实验比较,说明了该方法的最新性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号