首页> 外文期刊>Geoscience and Remote Sensing, IEEE Transactions on >Artificial DNA Computing-Based Spectral Encoding and Matching Algorithm for Hyperspectral Remote Sensing Data
【24h】

Artificial DNA Computing-Based Spectral Encoding and Matching Algorithm for Hyperspectral Remote Sensing Data

机译:基于人工DNA计算的高光谱遥感数据光谱编码与匹配算法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a spectral encoding and matching algorithm inspired by biological deoxyribonucleic acid (DNA) computing is proposed to perform the task of spectral signature classification for hyperspectral remote sensing data. As a novel branch of computational intelligence, DNA computing has the strong computing and matching capability to discriminate the tiny differences in DNA strands by DNA encoding and matching in the molecule layer. Similar to DNA discrimination, a hyperspectral remote sensing data matching approach is used to recognize the land cover material from a spectral library or image, according to the rich spectral information. However, it is difficult to apply DNA computing to hyperspectral remote sensing data processing because traditional DNA computing often relies on biochemical reactions of DNA molecules and may result in incorrect or undesirable computations. To utilize the advantages and avoid the problems of biological DNA computing, an artificial DNA computing approach is proposed for spectral encoding and matching for hyperspectral remote sensing data. A DNA computing-based spectral matching approach is used to first transform spectral signatures into DNA codewords by capturing the key spectral features with a spectral feature encoding operation. After DNA encoding, the typical DNA database for interesting classes is constructed and saved by DNA evolutionary operating mechanisms such as crossover, mutation, and structured mutation. During the course of spectral matching, each pixel of the hyperspectral image, or each signature measured in the field, is input to the constructed DNA database. By computing the distance between an unclassified spectrum and the typical DNA codewords from the database, the class property of each pixel is set as the minimum distance class. Experiments using different hyperspectral data sets were performed to evaluate the performance of the proposed artificial DNA computing-based spectral matching algorithm by comp- ring it with other traditional hyperspectral classifiers, including spectral matching classifiers (binary coding, spectral angle mapper and spectral derivative feature coding (SDFC) matching methods) and a novel statistical method of machine learning termed support vector machine (SVM). Experimental results demonstrate that the proposed algorithm is distinctly superior to the three traditional hyperspectral data classification algorithms. It presents excellent processing efficiency, compared to SVM, with high-dimensional data captured by the Hyperspectral Digital Imagery Collection Experiment sensor, and hence provides an effective option for spectral matching classification of hyperspectral remote sensing data.
机译:本文提出了一种基于生物脱氧核糖核酸(DNA)计算的光谱编码和匹配算法,以完成高光谱遥感数据的光谱特征分类任务。作为计算智能的一个新分支,DNA计算具有强大的计算和匹配能力,可以通过分子层中的DNA编码和匹配来区分DNA链中的微小差异。与DNA识别类似,高光谱遥感数据匹配方法用于根据丰富的光谱信息从光谱库或图像中识别土地覆盖物。但是,将DNA计算应用于高光谱遥感数据处理是困难的,因为传统的DNA计算通常依赖于DNA分子的生化反应,并可能导致错误的计算或不良的计算。为了利用这些优点并避免生物DNA计算的问题,提出了一种人工DNA计算方法来对高光谱遥感数据进行光谱编码和匹配。基于DNA计算的光谱匹配方法用于通过使用光谱特征编码操作捕获关键光谱特征来首先将光谱特征转换为DNA码字。在进行DNA编码之后,可以通过诸如交叉,突变和结构化突变等DNA进化操作机制来构建和保存有趣类别的典型DNA数据库。在光谱匹配的过程中,将高光谱图像的每个像素或现场测量的每个特征输入到构建的DNA数据库中。通过计算数据库中未分类光谱与典型DNA码字之间的距离,将每个像素的class属性设置为最小距离类别。通过使用不同的高光谱数据集进行实验,通过将其与其他传统的高光谱分类器(包括光谱匹配分类器(二进制编码,光谱角度映射器和光谱导数特征编码)进行组合,来评估基于人工DNA计算的光谱匹配算法的性能(SDFC)匹配方法)和一种称为支持向量机(SVM)的新型机器学习统计方法。实验结果表明,该算法明显优于三种传统的高光谱数据分类算法。与SVM相比,通过高光谱数字影像收集实验传感器捕获的高维数据,它具有出色的处理效率,因此为高光谱遥感数据的光谱匹配分类提供了有效的选择。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号