首页> 外文期刊>Geoscience and Remote Sensing, IEEE Transactions on >Unsupervised Polarimetric SAR Image Segmentation and Classification Using Region Growing With Edge Penalty
【24h】

Unsupervised Polarimetric SAR Image Segmentation and Classification Using Region Growing With Edge Penalty

机译:基于边缘惩罚的区域无监督极化SAR图像分割与分类

获取原文
获取原文并翻译 | 示例

摘要

A region-based unsupervised segmentation and classification algorithm for polarimetric synthetic aperture radar (SAR) imagery that incorporates region growing and a Markov random field edge strength model is designed and implemented. This algorithm is an extension of the successful Iterative Region Growing with Semantics (IRGS) segmentation and classification algorithm, which was designed for amplitude only SAR imagery, to polarimetric data. Polarimetric IRGS (PolarIRGS) extends IRGS by incorporating a polarimetric feature model based on the Wishart distribution and modifying key steps such as initialization, edge strength computation, and the region growing criterion. Like IRGS, PolarIRGS oversegments an image into regions and employs iterative region growing to reduce the size of the solution search space. The incorporation of an edge penalty in the spatial context model improves segmentation performance by preserving segment boundaries that traditional spatial models will smooth over. Evaluation of PolarIRGS with Flevoland fully polarimetric data shows that it improves upon two other recently published techniques in terms of classification accuracy.
机译:设计并实现了一种基于区域的极化合成孔径雷达(SAR)图像无监督分割和分类算法,该算法结合了区域增长和马尔可夫随机场边缘强度模型。该算法是成功的“迭代语义增长区域”(IRGS)分割和分类算法的扩展,该算法专门用于仅振幅SAR图像的极化数据。极化IRGS(PolarIRGS)通过结合基于Wishart分布的极化特征模型并修改关键步骤(如初始化,边缘强度计算和区域增长标准)来扩展IRGS。与IRGS一样,PolarIRGS将图像过度分割成多个区域,并采用迭代区域增长法来减小解搜索空间的大小。通过在空间上下文模型中合并边缘罚分,可以保留传统空间模型可以平滑处理的片段边界,从而提高了分割性能。用Flevoland完全极化数据对PolarIRGS进行评估表明,它在分类准确性方面比最近发布的其他两种技术有所改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号