首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing. >Hydrometeor Profile Characterization Method for Dual-Frequency Precipitation Radar Onboard the GPM
【24h】

Hydrometeor Profile Characterization Method for Dual-Frequency Precipitation Radar Onboard the GPM

机译:GPM机载双频降水雷达的水气廓线表征方法

获取原文
获取原文并翻译 | 示例

摘要

Profile classification is a critical module in the microphysics retrieval algorithm for the dual-frequency precipitation radar (DPR) that will be onboard the Global Precipitation Measurement (GPM) Core satellite. Hydrometeor profile characterization (HPC or melting region detection) is an important part of profile classification. To accomplish this classification, characteristics of measured dual-frequency ratio $DFR_{m}$, defined as the difference between measured reflectivity at two frequency channels (Ku- and Ka-bands), were studied for different hydrometeor phases. This paper shows that a $DFR_{m}$ profile can be used to detect the frozen, mixed-phase, and liquid regions. An HPC model is developed in this paper for DPR profile classification using $DFR_{m}$ and its range variability along the height. Data collected by the Second Generation Airborne Precipitation Radar (APR-2) in NASA African Monsoon Multidisciplinary Analysis, Genesis and Rapid Intensification Processes, and Wakasa Bay campaigns are employed in model validation. Signatures of Doppler velocity, as well as the linear depolarization ratio at Ku-band, available for APR-2 data, are used for cross-validation purpose. Comparison of the melting layer top and bottom between the HPC model and the velocity-based estimates shows that they compare well, with a 2% bias. The performance of the HPC method at GPM-DPR observation resolution is evaluated and is shown to be applicable to observation at GPM-DPR resolution. It can be inferred from the analysis presented that the methodology developed in this paper using $DFR_{m}$ is a good candidate for HPC for GPM-DPR.
机译:轮廓分类是双频降水雷达(DPR)的微物理检索算法中的关键模块,该雷达将搭载在全球降水量测量(GPM)核心卫星上。水凝流廓线表征(HPC或融化区检测)是廓线分类的重要组成部分。为了完成此分类,将测得的双频比的特性定义为测得的反射率之间的差异,该特性表示为测得的反射率之差。研究了两个频率信道(Ku和Ka频段)的不同水汽流相。本文表明,可以使用 $ DFR_ {m} $ 配置文件来检测冷冻,混合相和液体地区。本文使用 $ DFR_ {m} $ 及其沿高度的范围变化性开发了用于DPR轮廓分类的HPC模型。 。第二代机载降水雷达(APR-2)在NASA非洲季风多学科分析,成因和快速集约过程以及Wakasa Bay活动中收集的数据用于模型验证。可用于APR-2数据的多普勒速度签名以及Ku波段的线性去极化率用于交叉验证。 HPC模型和基于速度的估计值之间的熔融层顶部和底部的比较显示,它们比较好,偏差为2%。评估了HPC方法在GPM-DPR分辨率下的性能,并显示适用于GPM-DPR分辨率下的观察。从提出的分析中可以推断出,本文使用 $ DFR_ {m} $ 开发的方法是很好的选择适用于GPM-DPR的HPC。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号