首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing. >On the CFAR Property of the RX Algorithm in the Presence of Signal-Dependent Noise in Hyperspectral Images
【24h】

On the CFAR Property of the RX Algorithm in the Presence of Signal-Dependent Noise in Hyperspectral Images

机译:高光谱图像中信号相关噪声存在下RX算法的CFAR特性

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we investigate the constant false-alarm rate (CFAR) property of the RX anomaly detector which is widely used for the analysis of hyperspectral data. The RX detector relies on an adaptive scheme where the mean vector and the covariance matrix of the background are locally estimated from the image pixels themselves. First, demeaning is accomplished by removing the estimated local background mean value, and then, the covariance matrix is estimated in a homogeneous neighborhood of each pixel. In principle, if the local mean is perfectly removed and the covariance matrix is estimated from background pixels sharing the same covariance matrix, the RX algorithm has the CFAR property, which is highly desirable in practical applications. The CFAR behavior of the algorithm also requires the spatial stationarity of the random noise affecting the hyperspectral image. In data collected by new-generation sensors, such an assumption is not valid because photon noise contribution, which depends on the spatially varying signal level, is not negligible. This has motivated us to analyze the behavior of the RX algorithm with respect to the CFAR property in data affected by signal-dependent (SD) noise. In this paper, we show both theoretically and experimentally that the SD noise is one of the causes of the non-CFAR behavior of the RX detector that we have experienced in many practical situations. We propose a strategy to enhance the robustness of the anomaly detection scheme with respect to the CFAR property based on an adaptive nonlinear transform aimed at reducing the dependence of the noise on the signal level. Experiments on simulated data and real data collected by a new hyperspectral camera are also presented and discussed.
机译:在本文中,我们研究了被广泛用于高光谱数据分析的RX异常检测器的恒定虚警率(CFAR)特性。 RX检测器依赖于一种自适应方案,其中背景矢量的均值矢量和协方差矩阵是根据图像像素本身进行局部估计的。首先,通过去除估计的局部背景平均值来完成消除,然后在每个像素的同质邻域中估计协方差矩阵。原则上,如果局部均值被完全消除,并且从共享相同协方差矩阵的背景像素中估计出协方差矩阵,则RX算法具有CFAR属性,这在实际应用中是非常需要的。该算法的CFAR行为还需要影响高光谱图像的随机噪声的空间平稳性。在新一代传感器收集的数据中,这种假设是无效的,因为取决于空间变化信号电平的光子噪声贡献不可忽略。这促使我们分析受信号相关(SD)噪声影响的数据中RX算法相对于CFAR属性的行为。在本文中,我们在理论上和实验上都表明,SD噪声是我们在许多实际情况下所经历的RX检测器非CFAR行为的原因之一。我们提出了一种基于自适应非线性变换的旨在针对CFAR属性增强异常检测方案的鲁棒性的策略,旨在减少噪声对信号电平的依赖性。还介绍和讨论了使用新型高光谱相机收集的模拟数据和真实数据的实验。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号