首页> 外文期刊>Geoscience and Remote Sensing, IEEE Transactions on >Signal-Dependent Noise Modeling and Model Parameter Estimation in Hyperspectral Images
【24h】

Signal-Dependent Noise Modeling and Model Parameter Estimation in Hyperspectral Images

机译:高光谱图像中与信号有关的噪声建模和模型参数估计

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a novel method to characterize random noise sources in hyperspectral (HS) images is proposed. Noise is described using a parametric model that accounts for the dependence of noise variance on the useful signal. Such model takes into account the photon noise contribution and is therefore suitable for noise characterization in the data acquired by new-generation HS sensors where electronic noise is not dominant. A new algorithm is developed for the estimation of noise parameters which consists of two steps. First, the noise and signal realizations are extracted from the original image by resorting to the multiple-linear-regression-based approach. Then, the model parameters are estimated by using a maximum likelihood approach. The new method does not require the intervention of a human operator and the selection of homogeneous regions in the scene. The performance of the new technique is analyzed on simulated HS data. Results on real data are also presented and discussed. Images acquired with a new-generation HS camera are analyzed to give an experimental evidence of the dependence of random noise on the signal level and to show the results of the estimation algorithm. The algorithm is also applied to a well-known Airborne Visible/Infrared Imaging Spectrometer data set in order to show its effectiveness when noise is dominated by the signal-independent term.
机译:本文提出了一种表征高光谱(HS)图像中随机噪声源的新方法。使用参数模型描述噪声,该模型考虑了噪声方差对有用信号的依赖性。这种模型考虑了光子噪声的贡献,因此适合在电子噪声不占主导地位的新一代HS传感器获取的数据中进行噪声表征。开发了一种新的算法来估计噪声参数,该算法包括两个步骤。首先,借助基于多线性回归的方法,从原始图像中提取噪声和信号实现。然后,通过使用最大似然法估计模型参数。新方法不需要人工干预,也不需要在场景中选择均质区域。在模拟的HS数据上分析了新技术的性能。还介绍和讨论了真实数据的结果。分析了用新一代HS相机获取的图像,以提供随机噪声对信号电平的依赖性的实验证据,并显示估计算法的结果。该算法还应用于著名的机载可见/红外成像光谱仪数据集,以显示当噪声由信号无关项主导时的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号