首页> 外文期刊>Geoscience and Remote Sensing, IEEE Transactions on >Models and Methods for Automated Background Density Estimation in Hyperspectral Anomaly Detection
【24h】

Models and Methods for Automated Background Density Estimation in Hyperspectral Anomaly Detection

机译:高光谱异常检测中自动背景密度估计的模型和方法

获取原文
获取原文并翻译 | 示例

摘要

Anomaly detection (AD) in remotely sensed hyperspectral images has been proven to be valuable in many applications. In this paper, we propose a scheme for detecting global anomalies in which a likelihood ratio test-based decision rule is applied in conjunction with automated data-driven estimation of the background probability density function (PDF). Specifically, the use of both semiparametric (finite mixtures) and nonparametric (Parzen windows) models is investigated for background PDF estimation. Although such approaches are well known in multivariate data analysis, they have been very seldom applied to estimate the hyperspectral image background PDF, mostly due to the difficulty of reliably learning the model parameters without operator intervention. In this paper, semi and nonparametric estimators have been successfully employed to estimate the image background PDF with the aim of detecting global anomalies in a scene benefiting from the application of ad hoc Bayesian learning strategies. Two real hyperspectral images have been used to experimentally evaluate the ability of the proposed AD scheme resulting from the application of different global background PDF models and learning methods.
机译:事实证明,遥感高光谱图像中的异常检测(AD)在许多应用中都很有价值。在本文中,我们提出了一种检测全局异常的方案,其中将基于似然比检验的决策规则与背景概率密度函数(PDF)的自动数据驱动估计结合起来应用。具体来说,研究了半参数(有限混合)模型和非参数(Parzen窗口)模型的使用,以进行背景PDF估计。尽管这样的方法在多变量数据分析中是众所周知的,但很少将其应用于估计高光谱图像背景PDF,这主要是由于难以在没有操作员干预的情况下可靠地学习模型参数。在本文中,半参数和非参数估计器已成功地用于估计图像背景PDF,目的在于受益于特设贝叶斯学习策略的应用,以检测场景中的全局异常。由于使用了不同的全局背景PDF模型和学习方法,因此使用了两个真实的高光谱图像来实验评估所提出的AD方案的能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号