首页> 外文OA文献 >Hyperspectral Anomaly Detection via Spatial Density Background Purification
【2h】

Hyperspectral Anomaly Detection via Spatial Density Background Purification

机译:通过空间密度背景纯化检测高光谱异常检测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In the research of anomaly detection methods, obtaining a pure background without abnormal pixels can effectively improve the detection performance and reduce the false-alarm rate. Therefore, this paper proposes a spatial density background purification (SDBP) method for hyperspectral anomaly detection. First, a density peak clustering (DP) algorithm is used to calculate the local density of pixels within a single window. Then, the local densities are sorted into descending order and the m pixels that have the highest local density are selected from high to low. Therefore, the potential abnormal pixels in the background can be effectively removed, and a purer background set can be obtained. Finally, the collaborative representation detector (CRD) is employed for anomaly detection. Considering that the neighboring area of each pixel will have homogeneous material pixels, we adopt the double window strategy to improve the above method. The local densities of the pixels between the large window and the small window are calculated, while all pixels are removed from the small window. This makes the background estimation more accurate, reduces the false-alarm rate, and improves the detection performance. Experimental results on three real hyperspectral datasets such as Airport, Beach, and Urban scenes indicate that the detection accuracy of this method outperforms other commonly used anomaly detection methods.
机译:在对异常检测方法的研究中,获得没有异常像素的纯背景可以有效地提高检测性能并降低假警报率。因此,本文提出了一种用于高光谱异常检测的空间密度背景纯化(SDBP)方法。首先,使用密度峰聚类(DP)算法来计算单个窗口内的局部像素的局部密度。然后,将局部密度分类为降序,并且具有最高局部密度的M个像素从高到低。因此,可以有效地移除背景中的电位异常像素,并且可以获得更纯版的背景集。最后,采用协同表示检测器(CRD)用于异常检测。考虑到每个像素的相邻区域将具有均匀的材料像素,我们采用双窗策略来提高上述方法。计算大窗口和小窗口之间的像素的局部密度,而所有像素从小窗口移除。这使得背景估计更准确,降低了假警报速率,并提高了检测性能。在机场,海滩和城市场景中的三个真正高光谱数据集上的实验结果表明该方法的检测准确性优于其他常用的异常检测方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号