首页> 外文期刊>Geoscience and Remote Sensing, IEEE Transactions on >Toward Fully Automatic Detection of Changes in Suburban Areas From VHR SAR Images by Combining Multiple Neural-Network Models
【24h】

Toward Fully Automatic Detection of Changes in Suburban Areas From VHR SAR Images by Combining Multiple Neural-Network Models

机译:结合多种神经网络模型从VHR SAR图像中全自动检测郊区区域的变化

获取原文
获取原文并翻译 | 示例

摘要

Recent X-band SAR missions, such as COSMO-SkyMed (CSK), which is able to provide very high spatial resolution images of an area of interest with a short revisit time, are expected to be quite useful sources of information for monitoring the terrestrial environment and its changes. On the other hand, the huge amount of data involved, as well as the need to promptly act in case of emergency, requires the development of automatic change detection tools. This paper reports on a novel automatic change detection algorithm combining multilayer perceptron neural networks (NNs) and pulse coupled NNs, which has been implemented and tested on pairs of Stripmap and Spotlight CSK images acquired on the Tor Vergata University area in the southeast outskirts of Rome, Italy, where a significant and continuous urbanization process is occurring.
机译:最近的X波段SAR任务,例如COSMO-SkyMed(CSK),能够以较短的重访时间提供感兴趣区域的非常高的空间分辨率图像,预计将成为监测地面的非常有用的信息来源环境及其变化。另一方面,所涉及的大量数据,以及在紧急情况下需要迅速采取行动的需求,要求开发自动变更检测工具。本文报告了一种新颖的结合多层感知器神经网络和脉冲耦合神经网络的自动变化检测算法,该算法已在罗马东南郊的Tor Vergata University地区获得的成对的Stripmap和Spotlight CSK图像上进行了实现和测试意大利,那里正在进行持续的重要城市化进程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号