首页> 外文期刊>Geoscience and Remote Sensing, IEEE Transactions on >Complex SAR Image Compression Based on Directional Lifting Wavelet Transform With High Clustering Capability
【24h】

Complex SAR Image Compression Based on Directional Lifting Wavelet Transform With High Clustering Capability

机译:高方向聚类能力的方向提升小波变换的复杂SAR图像压缩

获取原文
获取原文并翻译 | 示例

摘要

We propose two synthetic aperture radar (SAR) complex image compression schemes based on DLWT_IQ and DLWT_FFT. DLWT_IQ encodes the real parts and imaginary parts of the images using directional lifting wavelet transform (DLWT) and bit plane encoder (BPE), while DLWT_FFT encodes the real images converted by fast Fourier transform (FFT). Compared with discrete wavelet transform-IQ (DWT_IQ), DLWT_IQ improves the peak signal-to-noise ratio (PSNR) up to 1.28 dB and reduces the mean phase error (MPE) up to 21.74%; and compared with DWT_FFT, DLWT_FFT improves the PSNR up to 1.22 dB and reduces the MPE up to 20.32%. Moreover, the proposed schemes increase the PSNR up to 3.34 dB and decrease the MPE up to 50.43% as compared with the set partitioning in hierarchical trees (SPIHT) algorithm. In addition to this, we observe a novel phenomenon, that is, DLWT with direction prediction achieves a higher clustering capability for complex SAR images than DWT. Then, coding algorithm based on DLWT requires fewer coding bits than DWT for the same number of coding coefficients, and DLWT outperforms DWT in terms of rate-distortion performance even if the K-term nonlinear approximation of DWT is better than that of DLWT.
机译:我们提出了两种基于DLWT_IQ和DLWT_FFT的合成孔径雷达(SAR)复杂图像压缩方案。 DLWT_IQ使用方向提升小波变换(DLWT)和位平面编码器(BPE)对图像的实部和虚部进行编码,而DLWT_FFT对通过快速傅立叶变换(FFT)转换后的实像进行编码。与离散小波变换IQ(DWT_IQ)相比,DLWT_IQ将峰值信噪比(PSNR)提高了1.28 dB,并将平均相位误差(MPE)降低了21.74%;与DWT_FFT相比,DLWT_FFT可以将PSNR提高到1.22 dB,将MPE降低到20.32%。此外,与分级树中的集划分(SPIHT)算法相比,所提出的方案可将PSNR提高到3.34 dB,将MPE降低到50.43%。除此之外,我们观察到一种新现象,即具有方向预测的DLWT比DWT具有更高的针对复杂SAR图像的聚类能力。然后,对于相同数量的编码系数,基于DLWT的编码算法所需的编码位数比DWT少,并且即使DWT的K项非线性逼近比DLWT更好,DLWT在速率失真性能方面也优于DWT。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号