首页> 外文期刊>Geoscience and Remote Sensing, IEEE Transactions on >Classification of Hyperspectral Images by Exploiting Spectral–Spatial Information of Superpixel via Multiple Kernels
【24h】

Classification of Hyperspectral Images by Exploiting Spectral–Spatial Information of Superpixel via Multiple Kernels

机译:通过多核利用超像素的光谱空间信息对高光谱图像进行分类

获取原文
获取原文并翻译 | 示例

摘要

For the classification of hyperspectral images (HSIs), this paper presents a novel framework to effectively utilize the spectral–spatial information of superpixels via multiple kernels, which is termed as superpixel-based classification via multiple kernels (SC-MK). In the HSI, each superpixel can be regarded as a shape-adaptive region, which consists of a number of spatial neighboring pixels with very similar spectral characteristics. First, the proposed SC-MK method adopts an oversegmentation algorithm to cluster the HSI into many superpixels. Then, three kernels are separately employed for the utilization of the spectral information, as well as spatial information, within and among superpixels. Finally, the three kernels are combined together and incorporated into a support vector machine classifier. Experimental results on three widely used real HSIs indicate that the proposed SC-MK approach outperforms several well-known classification methods.
机译:对于高光谱图像(HSI)的分类,本文提出了一个新颖的框架,可通过多个内核有效利用超像素的光谱空间信息,这被称为通过多个内核(SC-MK)的基于超像素的分类。在HSI中,每个超像素都可以视为形状适应区域,它由许多具有非常相似的光谱特征的空间相邻像素组成。首先,所提出的SC-MK方法采用过分分割算法将HSI聚类为许多超像素。然后,分别使用三个内核来利用超像素之内和之中的光谱信息以及空间信息。最后,将三个内核组合在一起,并合并到支持向量机分类器中。在三个广泛使用的真实HSI上的实验结果表明,所提出的SC-MK方法优于几种众所周知的分类方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号