首页> 外文期刊>Geoscience and Remote Sensing, IEEE Transactions on >Identifiability of the Simplex Volume Minimization Criterion for Blind Hyperspectral Unmixing: The No-Pure-Pixel Case
【24h】

Identifiability of the Simplex Volume Minimization Criterion for Blind Hyperspectral Unmixing: The No-Pure-Pixel Case

机译:用于盲高光谱分解的单纯形体积最小化准则的可识别性:无纯像素情况

获取原文
获取原文并翻译 | 示例

摘要

In blind hyperspectral unmixing (HU), the pure-pixel assumption is well known to be powerful in enabling simple and effective blind HU solutions. However, the pure-pixel assumption is not always satisfied in an exact sense, especially for scenarios where pixels are heavily mixed. In the no-pure-pixel case, a good blind HU approach to consider is the minimum volume enclosing simplex (MVES). Empirical experience has suggested that MVES algorithms can perform well without pure pixels, although it was not totally clear why this is true from a theoretical viewpoint. This paper aims to address the latter issue. We develop an analysis framework wherein the perfect endmember identifiability of MVES is studied under the noiseless case. We prove that MVES is indeed robust against lack of pure pixels, as long as the pixels do not get too heavily mixed and too asymmetrically spread. The theoretical results are supported by numerical simulation results.
机译:在盲高光谱解混(HU)中,众所周知,纯像素假设在启用简单有效的盲HU解决方案方面功能强大。但是,并非总是在严格意义上满足纯像素假设,尤其是对于像素严重混合的场景。在非纯像素的情况下,要考虑的一个好的盲HU方法是最小体积封闭单形(MVES)。经验经验表明,MVES算法在没有纯像素的情况下仍可以很好地执行,尽管从理论观点来看,为什么这样做是正确的,但尚不完全清楚。本文旨在解决后一个问题。我们开发了一个分析框架,其中在无噪声的情况下研究了MVES的完美末端成员可识别性。我们证明,只要像素不发生过多的混合和不对称地散布,MVES确实可以抵抗缺乏纯像素的情况。理论结果得到数值模拟结果的支持。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号