首页> 外文OA文献 >Identifiability of the Simplex Volume Minimization Criterion for Blind Hyperspectral Unmixing: The No-Pure-Pixel Case
【2h】

Identifiability of the Simplex Volume Minimization Criterion for Blind Hyperspectral Unmixing: The No-Pure-Pixel Case

机译:盲高光谱解密的单纯x卷最小化标准的可识别性:无纯映射案例

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In blind hyperspectral unmixing (HU), the pure-pixel assumption is well-knownto be powerful in enabling simple and effective blind HU solutions. However,the pure-pixel assumption is not always satisfied in an exact sense, especiallyfor scenarios where pixels are heavily mixed. In the no pure-pixel case, a goodblind HU approach to consider is the minimum volume enclosing simplex (MVES).Empirical experience has suggested that MVES algorithms can perform wellwithout pure pixels, although it was not totally clear why this is true from atheoretical viewpoint. This paper aims to address the latter issue. We developan analysis framework wherein the perfect endmember identifiability of MVES isstudied under the noiseless case. We prove that MVES is indeed robust againstlack of pure pixels, as long as the pixels do not get too heavily mixed and tooasymmetrically spread. The theoretical results are verified by numericalsimulations.
机译:在盲高光谱分解(HU)中,众所周知,纯像素假设可以有效实现简单有效的盲HU解决方案。但是,并非总是在确切意义上满足纯像素假设,尤其是对于像素高度混合的场景。在没有纯像素的情况下,考虑的最佳盲人HU方法是最小体积封闭单形(MVES)。经验表明,在没有纯像素的情况下,MVES算法可以表现良好,尽管从理论角度来看,这还不是很清楚。本文旨在解决后一个问题。我们开发了一个分析框架,其中在无噪声情况下研究了MVES的完美末端成员可识别性。我们证明,只要像素不被过度混合和太对称地分布,MVES确实能够抵抗纯像素的缺乏。通过数值模拟验证了理论结果。

著录项

  • 作者

    ArulMurugan Ambikapathi;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"english","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号