首页> 外文期刊>IEEE Transactions on Signal Processing >A Fast Hyperplane-Based Minimum-Volume Enclosing Simplex Algorithm for Blind Hyperspectral Unmixing
【24h】

A Fast Hyperplane-Based Minimum-Volume Enclosing Simplex Algorithm for Blind Hyperspectral Unmixing

机译:基于超平面的最小体积封闭单纯形算法用于盲高光谱分解

获取原文
获取原文并翻译 | 示例

摘要

Hyperspectral unmixing (HU) is a crucial signal processing procedure to identify the underlying materials (or endmembers) and their corresponding proportions (or abundances) from an observed hyperspectral scene. A well-known blind HU criterion, advocated by Craig during the early 1990s, considers the vertices of the minimum-volume enclosing simplex of the data cloud as good endmember estimates, and it has been empirically and theoretically found effective even in the scenario of no pure pixels. However, such kinds of algorithms may suffer from heavy simplex volume computations in numerical optimization, etc. In this paper, without involving any simplex volume computations, by exploiting a convex geometry fact that a simplest simplex of vertices can be defined by associated hyperplanes, we propose a fast blind HU algorithm, for which each of the hyperplanes associated with the Craig’s simplex of vertices is constructed from affinely independent data pixels, together with an endmember identifiability analysis for its performance support. Without resorting to numerical optimization, the devised algorithm searches for the active data pixels via simple linear algebraic computations, accounting for its computational efficiency. Monte Carlo simulations and real data experiments are provided to demonstrate its superior efficacy over some benchmark Craig-criterion-based algorithms in both computational efficiency and estimation accuracy.
机译:高光谱分解(HU)是至关重要的信号处理程序,用于从观察到的高光谱场景中识别基础材料(或端成员)及其相应的比例(或丰度)。克雷格(Craig)在1990年代初期倡导的一项众所周知的盲HU准则认为,数据云的最小体积封闭单纯形的顶点是最终成员的良好估计,即使在无条件的情况下,从经验和理论上也发现它是有效的纯像素。但是,此类算法可能会在数值优化等方面遭受繁重的单纯形体积计算的困扰。在本文中,不涉及任何单纯形体积计算,通过利用凸几何事实,即最简单的顶点单纯形可以由关联的超平面定义,我们提出了一种快速盲HU算法,对于该算法,与仿造的Craig顶点单纯形相关联的每个超平面均由仿射无关的数据像素构成,并对其性能进行端构件可识别性分析。在不求助于数值优化的情况下,考虑到其计算效率,所设计的算法通过简单的线性代数计算来搜索活动数据像素。提供了蒙特卡洛模拟和真实数据实验,以证明其在计算效率和估计准确性方面均优于某些基于基准克雷格准则的算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号