首页> 外文会议>IEEE International Conference on Acoustics, Speech and Signal Processing;ICASSP 2009 >Convex analysis based minimum-volume enclosing simplex algorithm for hyperspectral unmixing
【24h】

Convex analysis based minimum-volume enclosing simplex algorithm for hyperspectral unmixing

机译:基于凸分析的最小体积封闭单纯形算法的高光谱解混

获取原文

摘要

Hyperspectral unmixing aims at identifying the hidden spectral signatures (or endmembers) and their corresponding proportions (or abundances) from an observed hyperspectral scene. Many existing approaches to hyperspectral unmixing rely on the pure-pixel assumption, which may be violated for highly mixed data. A heuristic unmixing criterion without requiring the pure-pixel assumption has been reported by Craig: The endmember estimates are determined by the vertices of a minimum-volume simplex enclosing all the observed pixels. In this paper, using convex analysis, we show that the hyperspectral unmixing by Craig's criterion can be formulated as an optimization problem of finding a minimum-volume enclosing simplex (MVES). An algorithm that cyclically solves the MVES problem via linear programs (LPs) is also proposed. Some Monte Carlo simulations are provided to demonstrate the efficacy of the proposed MVES algorithm.
机译:高光谱解混的目的是从观察到的高光谱场景中识别隐藏的光谱特征(或末端成员)及其对应的比例(或丰度)。许多现有的高光谱解混方法都依赖于纯像素假设,对于高度混合的数据可能会违反这一假设。 Craig报告了一种无需纯像素假设的启发式分解标准:端成员估计值由包围所有观察像素的最小体积单纯形的顶点确定。在本文中,通过凸分析,我们证明了可以将基于Craig准则的高光谱解混表示为寻找最小体积封闭单形(MVES)的优化问题。还提出了一种通过线性程序(LP)循环解决MVES问题的算法。提供了一些蒙特卡洛模拟,以证明所提出的MVES算法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号