首页> 外文期刊>Geoscience and Remote Sensing, IEEE Transactions on >A Wavelet-Enhanced Inversion Method for Water Quality Retrieval From High Spectral Resolution Data for Complex Waters
【24h】

A Wavelet-Enhanced Inversion Method for Water Quality Retrieval From High Spectral Resolution Data for Complex Waters

机译:基于复杂水域高光谱分辨率数据的小波增强反演方法

获取原文
获取原文并翻译 | 示例

摘要

Optical remote sensing in complex waters is challenging because the optically active constituents may vary independently and have a combined and interacting influence on the remote sensing signal. Additionally, the remote sensing signal is influenced by noise and spectral contamination by confounding factors, resulting in ill-posedness and ill-conditionedness in the inversion of the model. There is a need for inversion methods that are less sensitive to these changing or shifting spectral features. We propose WaveIN, a wavelet-enhanced inversion method, specifically designed for complex waters. It integrates wavelet-transformed high-spectral resolution reflectance spectra in a multiscale analysis tool. Wavelets are less sensitive to a bias in the spectra and can avoid the changing or shifting spectral features by selecting specific wavelet scales. This paper applied WaveIN to simulated reflectance spectra for the Scheldt River. We tested different scenarios, where we added specific noise or confounding factors, specifically uncorrelated noise, contamination due to spectral mixing, a different sun zenith angle, and specific inherent optical property (SIOP) variation. WaveIN improved the constituent estimation in case of the reference scenario, contamination due to spectral mixing, and a different sun zenith angle. WaveIN could reduce, but not overcome, the influence of variation in SIOPs. Furthermore, it is sensitive to wavelet edge effects. In addition, it still requires in situ data for the wavelet scale selection. Future research should therefore improve the wavelet scale selection.
机译:复杂水中的光学遥感具有挑战性,因为光学活性成分可能会独立变化,并对遥感信号产生综合影响。另外,遥感信号受噪声和频谱污染等混杂因素的影响,从而导致模型反演中的不适性和不适性。需要对这些变化或移位的频谱特征不太敏感的反演方法。我们提出WaveIN,一种专门针对复杂水域设计的小波增强反演方法。它在多尺度分析工具中集成了小波变换的高光谱分辨率反射光谱。小波对频谱的偏差不太敏感,可以通过选择特定的小波尺度来避免频谱特征的改变或移动。本文将WaveIN应用于Scheldt河的模拟反射光谱。我们测试了不同的场景,在其中添加了特定的噪声或混杂因素,特别是不相关的噪声,由于光谱混合而造成的污染,不同的太阳天顶角以及特定的固有光学特性(SIOP)变化。在参考情况下,WaveIN改进了成分估计,由于光谱混合而污染,并且太阳天顶角不同。 WaveIN可以减少但不能克服SIOP变化的影响。此外,它对小波边缘效应很敏感。另外,它仍然需要就地数据来进行小波尺度选择。因此,未来的研究应该改善小波尺度的选择。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号