首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Adaptive Coherency Matrix Estimation for Polarimetric SAR Imagery Based on Local Heterogeneity Coefficients
【24h】

Adaptive Coherency Matrix Estimation for Polarimetric SAR Imagery Based on Local Heterogeneity Coefficients

机译:基于局部异质性系数的极化SAR图像自适应相干矩阵估计

获取原文
获取原文并翻译 | 示例

摘要

Polarimetric synthetic aperture radar (SAR) images usually contain a mixture of homogeneous and heterogeneous regions, which makes estimation of the coherency matrix a very challenging task. In this paper, we propose an adaptive coherency matrix estimation method that employs local heterogeneity coefficient and leverages the sample covariance matrix estimation to the homogeneous components and the fixed-point estimation to the heterogeneous components. Evaluations were conducted with synthetic polarimetric data and real-world SAR imagery, including UAVSAR, RADARSAT-2, and ESAR. Our experimental results demonstrated that the heterogeneity coefficient effectively characterizes the scattering property of ground objects, which enables adaptive estimation of the coherency matrix in high-resolution polarimetric SAR imagery. Our method was able to handle single- and multilook polarimetric SAR imagery gracefully. Compared with the sample covariance matrix estimator, the fixed-point estimator, and the Lee sigma filtering, our method achieved the best performance for retaining the spatial structure, suppressing speckles, and preserving polarimetric information of SAR imagery with different degrees of heterogeneity.
机译:极化合成孔径雷达(SAR)图像通常包含同质和异质区域的混合,这使得相干矩阵的估计成为一项非常艰巨的任务。在本文中,我们提出了一种自适应相干矩阵估计方法,该方法利用局部异质性系数,并利用样本协方差矩阵估计对齐次分量和定点估计对异类分量。使用合成极化数据和真实世界的SAR图像(包括UAVSAR,RADARSAT-2和ESAR)进行评估。我们的实验结果表明,异质性系数有效地表征了地面物体的散射特性,从而可以自适应地估计高分辨率极化SAR图像中的相干矩阵。我们的方法能够优雅地处理单视和多视极化SAR图像。与样本协方差矩阵估计器,定点估计器和Lee sigma滤波相比,我们的方法在保留不同异质性程度的SAR图像的空间结构,抑制斑点和保留极化信息方面取得了最佳性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号