首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Regression Wavelet Analysis for Lossless Coding of Remote-Sensing Data
【24h】

Regression Wavelet Analysis for Lossless Coding of Remote-Sensing Data

机译:遥感数据无损编码的回归小波分析

获取原文
获取原文并翻译 | 示例

摘要

A novel wavelet-based scheme to increase coefficient independence in hyperspectral images is introduced for lossless coding. The proposed regression wavelet analysis (RWA) uses multivariate regression to exploit the relationships among wavelet-transformed components. It builds on our previous nonlinear schemes that estimate each coefficient from neighbor coefficients. Specifically, RWA performs a pyramidal estimation in the wavelet domain, thus reducing the statistical relations in the residuals and the energy of the representation compared to existing wavelet-based schemes. We propose three regression models to address the issues concerning estimation accuracy, component scalability, and computational complexity. Other suitable regression models could be devised for other goals. RWA is invertible, it allows a reversible integer implementation, and it does not expand the dynamic range. Experimental results over a wide range of sensors, such as AVIRIS, Hyperion, and Infrared Atmospheric Sounding Interferometer, suggest that RWA outperforms not only principal component analysis and wavelets but also the best and most recent coding standard in remote sensing, CCSDS-123.
机译:针对无损编码,提出了一种基于小波的新颖方法以提高高光谱图像的系数独立性。所提出的回归小波分析(RWA)使用多元回归来利用小波变换分量之间的关系。它建立在我们以前的非线性方案的基础上,该方案从邻居系数估计每个系数。具体而言,RWA在小波域中执行金字塔估计,从而与现有的基于小波的方案相比,减少了残差和表示能量的统计关系。我们提出了三种回归模型来解决有关估计精度,组件可伸缩性和计算复杂性的问题。可以为其他目标设计其他合适的回归模型。 RWA是可逆的,它允许可逆的整数实现,并且不会扩展动态范围。在各种传感器(例如AVIRIS,Hyperion和红外大气探测干涉仪)上的实验结果表明,RWA不仅优于主要成分分析和小波,而且还优于遥感中最好和最新的编码标准CCSDS-123。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号