首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Regression Wavelet Analysis for Near-Lossless Remote Sensing Data Compression
【24h】

Regression Wavelet Analysis for Near-Lossless Remote Sensing Data Compression

机译:近无损遥感数据压缩的回归小波分析

获取原文
获取原文并翻译 | 示例

摘要

Regression wavelet analysis (RWA) is one of the current state-of-the-art lossless compression techniques for remote sensing data. This article presents the first regression-based near-lossless compression method. It is built upon RWA, a quantizer, and a feedback loop to compensate the quantization error. Our near-lossless RWA (NLRWA) proposal can be followed by any entropy coding technique. Here, the NLRWA is coupled with a bitplane-based coder that supports progressive decoding. This successfully enables gradual quality refinement and lossless and near-lossless recovery. A smart strategy for selecting the NLRWA quantization steps is also included. Experimental results show that the proposed scheme outperforms the state-of-the-art lossless and the near-lossless compression methods in terms of compression ratios and quality retrieval.
机译:回归小波分析(RWA)是用于遥感数据的当前最先进的无损压缩技术之一。本文介绍了基于回归的近无损压缩方法。它是基于RWA,量化器和反馈回路,以补偿量化误差。我们的近无损RWA(NLRWA)提案可以跟随任何熵编码技术。这里,NLRWA与支持逐行解码的基于位平面的编码器耦合。这成功实现了逐步的质量细化和无损和近无损恢复。还包括用于选择NLRWA量化步骤的智能策略。实验结果表明,该方案在压缩比和质量检索方面优于最先进的无损压缩方法和近无损压缩方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号