首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Noise Removal From Hyperspectral Image With Joint Spectral–Spatial Distributed Sparse Representation
【24h】

Noise Removal From Hyperspectral Image With Joint Spectral–Spatial Distributed Sparse Representation

机译:联合光谱-空间分布稀疏表示的高光谱图像去噪

获取原文
获取原文并翻译 | 示例

摘要

Hyperspectral image (HSI) denoising is a crucial preprocessing task that is used to improve the quality of images for object detection, classification, and other subsequent applications. It has been reported that noise can be effectively removed using the sparsity in the nonnoise part of the image. With the appreciable redundancy and correlation in HSIs, the denoising performance can be greatly improved if this redundancy and correlation is utilized efficiently in the denoising process. Inspired by this observation, a noise reduction method based on joint spectral–spatial distributed sparse representation is proposed for HSIs, which exploits the intraband structure and the interband correlation in the process of joint sparse representation and joint dictionary learning. In joint spectral–spatial sparse coding, the interband correlation is exploited to capture the similar structure and maintain the spectral continuity. The intraband structure is utilized to adaptively code the spatial structure differences of the different bands. Furthermore, using a joint dictionary learning algorithm, we obtain a dictionary that simultaneously describes the content of the different bands. Experiments on both synthetic and real hyperspectral data show that the proposed method can obtain better results than the other classic methods.
机译:高光谱图像(HSI)降噪是一项至关重要的预处理任务,用于提高图像质量,以进行对象检测,分类和其他后续应用。据报道,使用图像的非噪声部分的稀疏性可以有效地去除噪声。通过在HSI中具有可观的冗余和相关性,如果在去噪过程中有效利用这种冗余和相关性,则可以大大提高去噪性能。受此启发,提出了一种基于频谱-空间分布式稀疏表示的降噪方法,用于HSI,在联合稀疏表示和联合字典学习的过程中利用带内结构和带间相关性。在联合频谱空间稀疏编码中,利用带间相关性来捕获相似的结构并保持频谱连续性。带内结构用于自适应地编码不同频带的空间结构差异。此外,使用联合字典学习算法,我们可以获得同时描述不同频段内容的字典。在合成和真实高光谱数据上的实验表明,该方法比其他经典方法可以获得更好的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号