首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Spectral–Spatial Feature Extraction for Hyperspectral Image Classification: A Dimension Reduction and Deep Learning Approach
【24h】

Spectral–Spatial Feature Extraction for Hyperspectral Image Classification: A Dimension Reduction and Deep Learning Approach

机译:高光谱图像分类的光谱空间特征提取:一种降维和深度学习方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a spectral–spatial feature based classification (SSFC) framework that jointly uses dimension reduction and deep learning techniques for spectral and spatial feature extraction, respectively. In this framework, a balanced local discriminant embedding algorithm is proposed for spectral feature extraction from high-dimensional hyperspectral data sets. In the meantime, convolutional neural network is utilized to automatically find spatial-related features at high levels. Then, the fusion feature is extracted by stacking spectral and spatial features together. Finally, the multiple-feature-based classifier is trained for image classification. Experimental results on well-known hyperspectral data sets show that the proposed SSFC method outperforms other commonly used methods for hyperspectral image classification.
机译:在本文中,我们提出了一种基于光谱空间特征的分类(SSFC)框架,该框架将降维和深度学习技术分别用于光谱和空间特征提取。在此框架下,提出了一种平衡的局部判别嵌入算法,用于从高维高光谱数据集中提取光谱特征。同时,利用卷积神经网络自动查找高水平的空间相关特征。然后,通过将光谱和空间特征堆叠在一起来提取融合特征。最终,对基于多特征的分类器进行图像分类训练。在众所周知的高光谱数据集上的实验结果表明,所提出的SSFC方法优于其他常用的高光谱图像分类方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号