首页> 外文会议>IEEE International Conference on Real-time Computing and Robotics >Spectral and Multi-Spatial-Feature Based Deep Learning for Hyperspectral Remote Sensing Image Classification
【24h】

Spectral and Multi-Spatial-Feature Based Deep Learning for Hyperspectral Remote Sensing Image Classification

机译:基于光谱和多空间特征的深度学习的高光谱遥感图像分类

获取原文

摘要

Hyperspectral data has a strong ability in information expression. In this paper, we will extract a variety of spectral features and Multi-spatial-dominated features. In order to make better use of the relationship between spatial neighborhood pixels, we introduce spatial features with two different window scales, which can be give us more abundant spatial information, and then we used a novel framework to merge this extracted features. This deep learning framework is made of sparse component analysis (SPCA), deep learning architecture, and logistic regression. For hyperspectral image classification, stacked autoencoders is an efficient deep learning framework. In detail, compared with principle component analysis (PCA), SPCA has a better effect on dimensionality reduction of nonlinear data, especially for hyperspectral data. The public data set Pavia Centre scene and Pavia University scene are used to test our proposed algorithm. Experimental results demonstrate that the proposed approach outperforms the compared. It also shows that the hyperspectral data classification based on deep learning has an excellent application prospect.
机译:高光谱数据具有强大的信息表达能力。在本文中,我们将提取各种光谱特征和多空间控制特征。为了更好地利用空间邻域像素之间的关系,我们引入了具有两种不同窗口比例的空间特征,可以为我们提供更多丰富的空间信息,然后我们使用了新颖的框架来合并这些提取的特征。该深度学习框架由稀疏组件分析(SPCA),深度学习体系结构和逻辑回归组成。对于高光谱图像分类,堆叠式自动编码器是一种有效的深度学习框架。详细而言,与主成分分析(PCA)相比,SPCA对减少非线性数据的降维效果更好,特别是对于高光谱数据。公开数据集Pavia Center场景和Pavia University场景用于测试我们提出的算法。实验结果表明,该方法优于同类方法。这也表明基于深度学习的高光谱数据分类具有很好的应用前景。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号