首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Soil Moisture Retrieval in Agricultural Fields Using Adaptive Model-Based Polarimetric Decomposition of SAR Data
【24h】

Soil Moisture Retrieval in Agricultural Fields Using Adaptive Model-Based Polarimetric Decomposition of SAR Data

机译:基于自适应模型的SAR数据极化分解反演农田土壤水分

获取原文
获取原文并翻译 | 示例

摘要

The aim of this paper was to estimate soil moisture in agricultural crop fields from fully polarimetric L-band synthetic aperture radar (SAR) data through the polarimetric decomposition of the SAR coherency matrix. A nonnegative-eigenvalue-decomposition scheme, together with an adaptive volume scattering model, is extended to an adaptive model-based decomposition (MBD) (Adaptive MBD) model for soil moisture retrieval. The Adaptive MBD can ensure nonnegative decomposed scattering components and allows two parameters (i.e., the mean orientation angle and a degree of randomness) to be determined to characterize the volume scattering. Its performance was tested using airborne SAR data and coincident ground measurements collected over agricultural fields in southeastern Australia and compared with previous MBD methods (i.e., the Freeman three-component decomposition using the extended Bragg model, the Yamaguchi three-component decomposition, and an iterative generalized hybrid decomposition). The results obtained with the newly proposed decomposition scheme agreed well with expectations based on observed plant structure and biomass levels. The new method was superior in tracking soil moisture dynamics with respect to previous decomposition methods in our study area, with root-mean-square error of soil moisture estimations being 0.10 and 0.14 m3/m3, respectively, for surface and double-bounce components. However, large variability in the achieved soil moisture accuracy was observed, depending on the presence of row structures in the underlying soil surface.
机译:本文的目的是通过SAR相干性矩阵的极化分解,从全极化L波段合成孔径雷达(SAR)数据估算农业作物田间的土壤水分。非负特征值分解方案与自适应体积散射模型一起被扩展到用于土壤水分获取的基于自适应模型的分解(MBD)(Adaptive MBD)模型。自适应MBD可以确保非负分解的散射分量,并允许确定两个参数(即,平均取向角和随机度)以表征体积散射。使用机载SAR数据和在澳大利亚东南部农田上收集的地面一致测量值测试了其性能,并与以前的MBD方法(即使用扩展Bragg模型的Freeman三组分分解,Yamaguchi三组分分解和迭代方法)进行了比较。广义混合分解)。通过新提议的分解方案获得的结果与基于观察到的植物结构和生物量水平的预期非常吻合。在我们的研究区域中,该新方法在跟踪土壤水分动力学方面优于以前的分解方法,对于表面和双反弹成分,土壤水分估算的均方根误差分别为0.10和0.14 m3 / m3。但是,观察到的土壤湿度精度差异很大,这取决于下层土壤表面是否存在行结构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号