首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Open-Loop Tracking of Rising and Setting GPS Radio-Occultation Signals From an Airborne Platform: Signal Model and Error Analysis
【24h】

Open-Loop Tracking of Rising and Setting GPS Radio-Occultation Signals From an Airborne Platform: Signal Model and Error Analysis

机译:来自机载平台的上升和设置GPS无线电掩星信号的开环跟踪:信号模型和误差分析

获取原文
获取原文并翻译 | 示例

摘要

Global Positioning System (GPS) radio-occultation (RO) is an atmospheric sounding technique utilizing the received GPS signal through the stratified atmosphere to measure refractivity, which provides information on temperature and humidity. The GPS-RO technique is now operational on several Low Earth Orbiting (LEO) satellites, which cannot provide high temporal and spatial resolution soundings necessary to observe localized transient events, such as tropical storms. An airborne RO (ARO) system has thus been developed for localized GPS-RO campaigns. RO signals in the lower troposphere are adversely affected by rapid phase accelerations and severe signal power fading. These signal dynamics often cause the phase-locked loop in conventional GPS survey receivers to lose lock in the lower troposphere, and the open-loop (OL) tracking in postprocessing is used to overcome this problem. OL tracking also allows robust processing of rising GPS signals, approximately doubling the number of observed occultations. An approach for “backward” OL tracking was developed, in which the correlations are computed sequentially in reverse time so that the signal can be acquired and tracked at high elevations for rising occultations. Ultimately, the signal-to-noise ratio (SNR) limits the depth of tracking in the atmosphere. We have developed a model relating the SNR to the variance in the residual phase of the observed signal produced from OL tracking. In this paper, we demonstrate the applicability of the phase variance model to airborne data. We then apply this model to set a threshold on refractivity retrieval based upon the cumulative unwrapping error bias to determine the altitude limit for reliable signal tracking. We also show consistency between the ARO SNR and collocated COSMIC satellite observations and use these results to evaluate the antenna requirements for an improved ARO system.
机译:全球定位系统(GPS)无线电掩星(RO)是一种大气探测技术,利用通过分层大气接收到的GPS信号来测量折射率,从而提供有关温度和湿度的信息。 GPS-RO技术现在可在几颗低地球轨道(LEO)卫星上运行,这些卫星无法提供观察局部瞬态事件(如热带风暴)所需的高时空分辨率测深。因此,已经开发了一种机载反渗透(ARO)系统,用于局部GPS-RO运动。对流层下部的RO信号会受到快速的相位加速和严重的信号功率衰减的不利影响。这些信号动力学通常会导致常规GPS测量接收器中的锁相环失去对流层下部的锁定,因此在后处理中使用开环(OL)跟踪来解决此问题。 OL跟踪还可以对上升的GPS信号进行稳健的处理,使观测到的掩星次数大约增加一倍。开发了一种用于“向后” OL跟踪的方法,其中按相反的时间顺序计算相关性,以便可以在高海拔地区捕获和跟踪上升的信号。最终,信噪比(SNR)限制了大气中跟踪的深度。我们已经开发了一个模型,该模型将SNR与OL跟踪产生的观测信号的残留相位中的方差相关。在本文中,我们证明了相位方差模型对机载数据的适用性。然后,我们基于累积展开误差偏差来应用此模型来设置折射率检索的阈值,以确定用于可靠信号跟踪的高度限制。我们还显示了ARO SNR与并置的COSMIC卫星观测值之间的一致性,并使用这些结果来评估改进ARO系统的天线要求。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号