首页> 外文期刊>Geoscience and Remote Sensing, IEEE Transactions on >Vehicle Detection in High-Resolution Aerial Images via Sparse Representation and Superpixels
【24h】

Vehicle Detection in High-Resolution Aerial Images via Sparse Representation and Superpixels

机译:通过稀疏表示和超像素在高分辨率航空图像中进行车辆检测

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a study of vehicle detection from high-resolution aerial images. In this paper, a superpixel segmentation method designed for aerial images is proposed to control the segmentation with a low breakage rate. To make the training and detection more efficient, we extract meaningful patches based on the centers of the segmented superpixels. After the segmentation, through a training sample selection iteration strategy that is based on the sparse representation, we obtain a complete and small training subset from the original entire training set. With the selected training subset, we obtain a dictionary with high discrimination ability for vehicle detection. During training and detection, the grids of histogram of oriented gradient descriptor are used for feature extraction. To further improve the training and detection efficiency, a method is proposed for the defined main direction estimation of each patch. By rotating each patch to its main direction, we give the patches consistent directions. Comprehensive analyses and comparisons on two data sets illustrate the satisfactory performance of the proposed algorithm.
机译:本文提出了一种从高分辨率航空影像中进行车辆检测的研究。提出了一种针对航空影像的超像素分割方法,以较低的破损率控制分割。为了使训练和检测更加有效,我们基于分割的超像素的中心提取有意义的补丁。分割后,通过基于稀疏表示的训练样本选择迭代策略,我们从原始的整个训练集中获得了完整且较小的训练子集。通过选择的训练子集,我们获得了具有高判别能力的字典以进行车辆检测。在训练和检测期间,定向梯度描述符的直方图网格用于特征提取。为了进一步提高训练和检测效率,提出了一种定义每个斑块的主方向估计的方法。通过将每个面片旋转到其主方向,我们为面片赋予一致的方向。对两个数据集的综合分析和比较说明了该算法的令人满意的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号