首页> 外文期刊>IEEE Geoscience and Remote Sensing Letters >Vehicle Detection in High-Resolution Images Using Superpixel Segmentation and CNN Iteration Strategy
【24h】

Vehicle Detection in High-Resolution Images Using Superpixel Segmentation and CNN Iteration Strategy

机译:使用超像素分割和CNN迭代策略的高分辨率图像中的车辆检测

获取原文
获取原文并翻译 | 示例

摘要

This letter presents a study of vehicle detection in high-resolution images using superpixel segmentation and iterative convolutional neural network strategy. First, a novel superpixel segmentation integrated with multiple local information constraints method is proposed to improve the segmentation results with a low breakage rate. To make training and detection more efficient, we extract meaningful and nonredundant patches based on the centers of the segmented superpixels. For reducing the instability in detection performance because of manual or random selection of samples, a training sample iterative selection strategy based on convolutional neural network is proposed. After a compact training sample subset is obtained from the original entire training set, a representative feature set with high discrimination ability between vehicle and background is extracted from these selected samples for detection. To further avoid overfitting the training and promote the detection efficiency, data augment and a main direction estimation method are used. Comparative experimental results on Toronto data indicated the effectiveness of our proposed method.
机译:这封信提出了使用超像素分割和迭代卷积神经网络策略在高分辨率图像中进行车辆检测的研究。首先,提出了一种新的结合多个局部信息约束的超像素分割方法,以提高低破损率的分割效果。为了使训练和检测更加有效,我们基于分割的超像素的中心提取有意义且非冗余的色块。为了减少由于手工或随机选择样本而导致的检测性能的不稳定性,提出了一种基于卷积神经网络的训练样本迭代选择策略。从原始的整个训练集中获得紧凑的训练样本子集后,从这些选定的样本中提取具有在车辆和背景之间具有高区分能力的代表性特征集进行检测。为了进一步避免过度拟合训练并提高检测效率,使用了数据增强和主方向估计方法。在多伦多数据上的比较实验结果表明了我们提出的方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号