首页> 外文期刊>Geoscience and Remote Sensing, IEEE Transactions on >Unsupervised Band Selection Based on Evolutionary Multiobjective Optimization for Hyperspectral Images
【24h】

Unsupervised Band Selection Based on Evolutionary Multiobjective Optimization for Hyperspectral Images

机译:基于进化多目标优化的高光谱图像无监督波段选择

获取原文
获取原文并翻译 | 示例

摘要

Band selection is an important preprocessing step for hyperspectral image processing. Many valid criteria have been proposed for band selection, and these criteria model band selection as a single-objective optimization problem. In this paper, a novel multiobjective model is first built for band selection. In this model, two objective functions with a conflicting relationship are designed. One objective function is set as information entropy to represent the information contained in the selected band subsets, and the other one is set as the number of selected bands. Then, based on this model, a new unsupervised band selection method called multiobjective optimization band selection (MOBS) is proposed. In the MOBS method, these two objective functions are optimized simultaneously by a multiobjective evolutionary algorithm to find the best tradeoff solutions. The proposed method shows two unique characters. It can obtain a series of band subsets with different numbers of bands in a single run to offer more options for decision makers. Moreover, these band subsets with different numbers of bands can communicate with each other and have a coevolutionary relationship, which means that they can be optimized in a cooperative way. Since it is unsupervised, the proposed algorithm is compared with some related and recent unsupervised methods for hyperspectral image band selection to evaluate the quality of the obtained band subsets. Experimental results show that the proposed method can generate a set of band subsets with different numbers of bands in a single run and that these band subsets have a stable good performance on classification for different data sets.
机译:波段选择是高光谱图像处理的重要预处理步骤。已经提出了许多有效的准则用于频带选择,并且这些准则将频带选择建模为单目标优化问题。在本文中,首先建立了一个新颖的多目标模型进行波段选择。在该模型中,设计了具有冲突关系的两个目标函数。将一个目标函数设置为信息熵,以表示包含在所选频段子集中的信息,另一目标函数设置为所选频段的数量。然后,基于该模型,提出了一种新的无监督频段选择方法,称为多目标优化频段选择(MOBS)。在MOBS方法中,这两个目标函数通过多目标进化算法同时进行优化,以找到最佳折衷解决方案。所提出的方法具有两个独特的特征。它可以在一次运行中获得具有不同频段数量的一系列频段子集,从而为决策者提供更多选择。而且,这些具有不同数目的频带的频带子集可以彼此通信并且具有协进化关系,这意味着它们可以以协作的方式被优化。由于它是无监督的,因此将所提出的算法与一些相关的和最新的无监督方法进行高光谱图像波段选择进行比较,以评估获得的波段子集的质量。实验结果表明,所提出的方法可以在一次运行中生成一组具有不同数量条带的条带子集,并且这些条带子集对于不同数据集的分类具有稳定的良好性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号