首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >A Method for Consistent Estimation of Multiple Land Surface Parameters From MODIS Top-of-Atmosphere Time Series Data
【24h】

A Method for Consistent Estimation of Multiple Land Surface Parameters From MODIS Top-of-Atmosphere Time Series Data

机译:一种基于MODIS大气顶时间序列数据的多个陆面参数一致性估计的方法

获取原文
获取原文并翻译 | 示例

摘要

Most methods for generating global land surface products from satellite data are parameter specific and do not use multiple temporal observations, which often results in spatial and temporal discontinuity and physical inconsistency among different products. This paper proposes a data assimilation (DA) scheme to simultaneously estimate five land surface parameters from Moderate Resolution Imaging Spectroradiometer (MODIS) top-of-atmosphere (TOA) time series reflectance data under clear and cloudy conditions. A coupled land surface-atmosphere radiative transfer model is developed to simulate TOA reflectance, and an ensemble Kalman filter technique is used to retrieve the most influential surface parameters of the coupled model, such as leaf area index, by combining predictions from dynamic models and the MODIS TOA reflectance data whether under clear or cloudy conditions. Then, the retrieved surface parameters are input to the coupled model to calculate four other parameters: 1) land surface reflectance; 2) incident photosynthetically active radiation (PAR); 3) land surface albedo; and 4) the fraction of absorbed PAR (FAPAR). The estimated parameters are compared with those of the corresponding MODIS, the Global LAnd Surface Satellite, and the Geoland2/BioPar version 1 (GEOV1) products. Validation of the estimated parameters against ground measurements from several sites with different vegetation types demonstrates that this method can estimate temporally complete land surface parameter profiles from MODIS TOA time series reflectance data, with accuracy comparable to that of existing satellite products over the selected sites. The retrieved leaf area index profiles are smoother than the existing satellite products, and unlike the MOD09GA product, the retrieved surface reflectance values do not have the high peak values influenced by clouds. The use of the coupled land surface-atmosphere model and the DA technique ensures physical connections between the land surface parameters and makes it possible to calculate radiation-related parameters for clear and cloudy atmospheric conditions, which is an improvement for FAPAR retrieval compared with the MODIS and GEOV1 products. The retrieved FAPAR and PAR values can reveal the significant differences in them under clear and cloudy atmospheric conditions.
机译:从卫星数据生成全球陆表产品的大多数方法都是特定于参数的,并且不使用多个时间观测值,这通常会导致不同产品之间的空间和时间间断以及物理上的不一致。本文提出了一种数据同化(DA)方案,可在晴天和阴天条件下,根据中分辨率成像光谱仪(MODIS)的大气顶(TOA)时间序列反射率数据,同时估算五个陆地表面参数。开发了一个耦合的地表-大气辐射传输模型来模拟TOA反射率,并采用集成卡尔曼滤波技术通过结合动态模型的预测结果和模型的结合来检索耦合模型中最有影响力的表面参数,例如叶面积指数。无论是晴天还是阴天,MODIS TOA的反射率数据。然后,将检索到的表面参数输入到耦合模型,以计算其他四个参数:1)陆地表面反射率; 2)入射光合有效辐射(PAR); 3)地表反照率; 4)吸收的PAR的分数(FAPAR)。将估计的参数与相应的MODIS,全球土地和地面卫星以及Geoland2 / BioPar版本1(GEOV1)产品的参数进行比较。针对具有不同植被类型的多个地点的地面测量值对估计参数进行验证表明,该方法可以从MODIS TOA时间序列反射率数据中估算时间上完整的陆地表面参数剖面,其准确性可与所选地点上现有卫星产品的准确性相提并论。检索到的叶面积指数分布图比现有的卫星产品更平滑,并且与MOD09GA产品不同,检索到的表面反射率值没有受云影响的高峰值。耦合的地表-大气模型和DA技术的使用确保了地表参数之间的物理联系,并使得可以在晴朗和多云的大气条件下计算与辐射有关的参数,与MODIS相比,这是FAPAR检索的一项改进和GEOV1产品。所获取的FAPAR和PAR值可以揭示在晴朗和多云的大气条件下它们的显着差异。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号