首页> 外文期刊>Geoscience and Remote Sensing, IEEE Transactions on >A Framework for Consistent Estimation of Leaf Area Index, Fraction of Absorbed Photosynthetically Active Radiation, and Surface Albedo from MODIS Time-Series Data
【24h】

A Framework for Consistent Estimation of Leaf Area Index, Fraction of Absorbed Photosynthetically Active Radiation, and Surface Albedo from MODIS Time-Series Data

机译:根据MODIS时间序列数据一致估算叶面积指数,吸收的光合有效辐射分数和表面反照率的框架

获取原文
获取原文并翻译 | 示例

摘要

Currently available land-surface parameter products are generated using parameter-specific algorithms from various satellite data and contain several inconsistencies. This paper developed a new data assimilation framework for consistent estimation of multiple land-surface parameters from time-series MODerate Resolution Imaging Spectroradiometer (MODIS) surface reflectance data. If the reflectance data showed snow-free areas, an ensemble Kalman filter (EnKF) technique was used to estimate leaf area index (LAI) for a two-layer canopy reflectance model (ACRM) by combining predictions from a phenology model and the MODIS surface reflectance data. The estimated LAI values were then input into the ACRM to calculate the surface albedo and the fraction of absorbed photosynthetically active radiation (FAPAR). For snow-covered areas, the surface albedo was calculated as the underlying vegetation canopy albedo plus the weighted distance between the underlying vegetation canopy albedo and the albedo over deep snow. The LAI/FAPAR and surface albedo values estimated using this framework were compared with MODIS collection 5 eight-day 1-km LAI/FAPAR products (MOD15A2) and 500-m surface albedo product (MCD43A3), and GEOV1 LAI/FAPAR products at 1/112° spatial resolution and a ten-day frequency, respectively, and validated by ground measurement data from several sites with different vegetation types. The results demonstrate that this new data assimilation framework can estimate temporally complete land-surface parameter profiles from MODIS time-series reflectance data even if some of the reflectance data are contaminated by residual cloud or are missing and that the retrieved LAI, FAPAR, and surface albedo values are physically consistent. The root mean square errors of the retrieved LAI, FAPAR, and surface albedo against ground measurements are 0.5791, 0.0453, and 0.0190, respectively.
机译:当前可用的地表参数产品是使用特定于参数的算法从各种卫星数据生成的,并且包含多个不一致之处。本文开发了一种新的数据同化框架,用于根据时间序列MODerate分辨率成像光谱仪(MODIS)的表面反射率数据一致地估计多个陆面参数。如果反射率数据显示无雪区域,则采用综合卡尔曼滤波器(EnKF)技术通过结合物候模型和MODIS表面的预测来估计两层冠层反射率模型(ACRM)的叶面积指数(LAI)。反射率数据。然后将估计的LAI值输入到ACRM中,以计算表面反照率和吸收的光合有效辐射(FAPAR)的比例。对于积雪覆盖的地区,表面反照率的计算方法是基础植被冠层反照率加上基础植被冠层反照率与深雪上反照率之间的加权距离。将使用此框架估算的LAI / FAPAR和地面反照率值与MODIS收集的5天1公里LAI / FAPAR产品(MOD15A2)和500米地面反照率产品(MCD43A3)以及GEOV1 LAI / FAPAR产品进行比较,得出1 / 112°的空间分辨率和10天的频率,并通过来自具有不同植被类型的多个地点的地面测量数据进行了验证。结果表明,即使某些反射率数据被残留云污染或丢失,并且检索到的LAI,FAPAR和地表,该新的数据同化框架也可以从MODIS时间序列反射率数据中估算时间上完整的陆地表面参数剖面。反照率值在物理上是一致的。检索到的LAI,FAPAR和表面反照率相对于地面测量的均方根误差分别为0.5791、0.0453和0.0190。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号