机译:集成判别局部度量学习的高光谱图像降维和分类
State Key Laboratory of Information Engineering in Surveying, Mapping, and Remote Sensing, Wuhan University, Wuhan, China;
School of Computer, Wuhan University, Wuhan, China;
State Key Laboratory of Information Engineering in Surveying, Mapping, and Remote Sensing, Wuhan University, Wuhan, China;
School of Computer, Wuhan University, Wuhan, China;
Measurement; Training; Principal component analysis; Algorithm design and analysis; Hyperspectral imaging; Learning systems;
机译:探索用于高光谱图像分类的局部自适应降维:最大幅度度量学习方面
机译:基于集成学习的多核主成分分析用于高光谱图像降维和分类
机译:基于集成学习的多核主成分分析用于高光谱图像降维和分类
机译:基于降维组合和旋转支持向量机集成学习的高光谱图像分类
机译:高光谱成像分类的并行化和降维算法。
机译:基于模糊性的主动学习框架可增强区分性和生成性分类器的高光谱图像分类性能
机译:通过学习非线性降维映射对高光谱图像进行概率分类
机译:利用学习VQ框架进行高光谱图像分类的判别和紧凑字典设计。