首页> 外文期刊>Mathematical Problems in Engineering >Ensemble Learning Based Multiple Kernel Principal Component Analysis for Dimensionality Reduction and Classification of Hyperspectral Imagery
【24h】

Ensemble Learning Based Multiple Kernel Principal Component Analysis for Dimensionality Reduction and Classification of Hyperspectral Imagery

机译:基于集成学习的多核主成分分析用于高光谱图像降维和分类

获取原文
获取原文并翻译 | 示例

摘要

Classification is one of the most challenging tasks of remotely sensed data processing, particularly for hyperspectral imaging (HSI). Dimension reduction is widely applied as a preprocessing step for classification; however the reduction of dimension using conventional methods may not always guarantee high classification rate. Principal component analysis (PCA) and its nonlinear version kernel PCA (KPCA) are known as traditional dimension reduction algorithms. In a previous work, a variant of KPCA, denoted as Adaptive KPCA (A-KPCA), is suggested to get robust unsupervised feature representation for HSI. The specified technique employs several KPCAs simultaneously to obtain better feature points from each applied KPCA which includes different candidate kernels. Nevertheless, A-KPCA neglects the influence of subkernels employing an unweighted combination. Furthermore, if there is at least one weak kernel in the set of kernels, the classification performance may be reduced significantly. To address these problems, in this paper we propose an Ensemble Learning (EL) based multiple kernel PCA (M-KPCA) strategy. M-KPCA constructs a weighted combination of kernels with high discriminative ability from a predetermined set of base kernels and then extracts features in an unsupervised fashion. The experiments on two different AVIRIS hyperspectral data sets show that the proposed algorithm can achieve a satisfactory feature extraction performance on real data.
机译:分类是遥感数据处理中最具挑战性的任务之一,特别是对于高光谱成像(HSI)。降维被广泛用作分类的预处理步骤;然而,使用常规方法减小尺寸并不能总是保证较高的分类率。主成分分析(PCA)及其非线性版本内核PCA(KPCA)被称为传统的降维算法。在先前的工作中,建议将KPCA的一种变体称为Adaptive KPCA(A-KPCA),以获得对HSI鲁棒的无监督特征表示。指定的技术同时使用几个KPCA,以便从每个应用的KPCA(包括不同的候选内核)中获得更好的特征点。但是,A-KPCA忽略了采用未加权组合的子内核的影响。此外,如果一组内核中至少有一个弱内核,则分类性能可能会大大降低。为了解决这些问题,在本文中,我们提出了一种基于集成学习(EL)的多内核PCA(M-KPCA)策略。 M-KPCA从一组预定的基础内核中构建具有高判别能力的内核的加权组合,然后以无监督的方式提取特征。在两个不同的AVIRIS高光谱数据集上的实验表明,该算法可以对真实数据实现令人满意的特征提取性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号