首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing. >Adaptive Two-Component Model-Based Decomposition for Polarimetric SAR Data Without Assumption of Reflection Symmetry
【24h】

Adaptive Two-Component Model-Based Decomposition for Polarimetric SAR Data Without Assumption of Reflection Symmetry

机译:不考虑反射对称性的极化SAR数据基于自适应两分量模型的分解

获取原文
获取原文并翻译 | 示例

摘要

Fitting polarimetric synthetic aperture radar (PolSAR) data with adaptive scattering models is a promising way to mitigate the deficiencies of the model-based decomposition. Recently, Lee et al. have proposed a generalized decomposition model with several adaptive parameters, whereas the generalized model introduces too much freedom to be solved. In this paper, based on the Lee generalized decomposition model, an adaptive two-component decomposition model is proposed. The PolSAR coherency matrix is represented as the sum of two scattering mechanisms: coherent ground scattering and incoherent volume scattering. The proposed model is under three assumptions: 1) Surface and double scattering are coherent; 2) surface and double scattering are integrated as the ground scattering; and 3) the average polarimetric orientation angle (POA) of the volume (or Bragg) scattering is zero. As the proposed model is very difficult to solve directly, we adopted the exhaustion technique to find the best fit parameter set. The proposed model has three advantages: 1) It can successfully avoid the negative power problem; 2) it is considered without the assumption of reflection symmetry; and 3) the dominant scattering mechanism criterion is not needed in the process of model inversion. However, the proposed model has two disadvantages: 1) the attribution of the volume model becomes ambiguous; and 2) the assumption that sets the POA of the Bragg scattering component to zero is inconsistent with the actual scattering mechanism when there is a slope in the rough surface. The polarimetric AIRSAR L-band data of San Francisco and ESAR L-band data of Oberpfaffenhofen were used to show the efficiency of the proposed decomposition model. Statistical properties of typical areas showed that, except the sea surface and the urban area with building orientation angle about 45°, the proposed model fits the PolSAR data very well.
机译:用自适应散射模型拟合极化合成孔径雷达(PolSAR)数据是减轻基于模型的分解缺陷的一种有前途的方法。最近,李等人。已经提出了具有几个自适应参数的广义分解模型,而该广义模型引入了太多的自由度需要解决。在Lee广义分解模型的基础上,提出了一种自适应的两成分分解模型。 PolSAR相干矩阵表示为两种散射机制的总和:相干地面散射和不相干体积散射。所提出的模型基于三个假设:1)表面和双散射是相干的; 2)将表面散射和双重散射集成为地面散射; 3)体积(或布拉格)散射的平均极化取向角(POA)为零。由于所提出的模型很难直接求解,因此我们采用了穷举技术来找到最佳拟合参数集。所提出的模型具有三个优点:1)它可以成功避免负电源问题; 2)考虑没有假设反射对称性; 3)在模型反演过程中不需要主导散射机制判据。然而,所提出的模型有两个缺点:1)体积模型的归属变得模棱两可。 2)当粗糙表面存在斜率时,将布拉格散射分量的POA设置为零的假设与实际的散射机理不一致。旧金山的极化AIRSAR L波段数据和Oberpfaffenhofen的ESAR L波段数据被用来证明所提出的分解模型的效率。典型区域的统计特性表明,除海面和市区的建筑物方位角约为45°外,所提出的模型与PolSAR数据非常吻合。

著录项

  • 来源
  • 作者单位

    Shenzhen Key Laboratory of Spatial Information Smart Sensing and Services and the Key Laboratory for Geo-Environment Monitoring of Coastal Zone of the National Administration of Surveying, Mapping and GeoInformation and the College of Information Engineering, Shenzhen University, Shenzhen, China;

    Shenzhen Key Laboratory of Spatial Information Smart Sensing and Services and the Key Laboratory for Geo-Environment Monitoring of Coastal Zone of the National Administration of Surveying, Mapping and GeoInformation and the College of Information Engineering, Shenzhen University, Shenzhen, China;

    Shenzhen Key Laboratory of Spatial Information Smart Sensing and Services and the Key Laboratory for Geo-Environment Monitoring of Coastal Zone of the National Administration of Surveying, Mapping and GeoInformation and the College of Information Engineering, Shenzhen University, Shenzhen, China;

    Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China;

    Shandong Institute of Agricultural Sustainable Development, Jinan, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Scattering; Adaptation models; Data models; Solid modeling; Mathematical model; Shape; Sea surface;

    机译:散射;适应模型;数据模型;实体模型;数学模型;形状;海面;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号