首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing. >Correntropy-Based Spatial-Spectral Robust Sparsity-Regularized Hyperspectral Unmixing
【24h】

Correntropy-Based Spatial-Spectral Robust Sparsity-Regularized Hyperspectral Unmixing

机译:基于管道的空间光谱韧性稀疏性 - 正则化高光谱

获取原文
获取原文并翻译 | 示例

摘要

Hyperspectral unmixing (HU) is a crucial technique for exploiting remotely sensed hyperspectral data, which aims at estimating a set of spectral signatures, called endmembers and their corresponding proportions, called abundances. The performance of HU is often seriously degraded by various kinds of noise existing in hyperspectral images (HSIs). Most of existing robust HU methods are based on the assumption that noise or outlier only exists in one kind of formulation, e.g., band noise or pixel noise. However, in real-world applications, HSIs are unavoidably corrupted by noisy bands and noisy pixels simultaneously, which require robust HU in both the spatial dimension and spectral dimension. Meanwhile, the sparsity of abundances is an inherent property of HSIs and different regions in an HSI may possess various sparsity levels across locations. This article proposes a correntropy-based spatial-spectral robust sparsity-regularized unmixing model to achieve 2-D robustness and adaptive weighted sparsity constraint for abundances simultaneously. The updated rules of the proposed model are efficient to be implemented and carried out by a half-quadratic technique. The experimental results obtained by both synthetic and real hyperspectral data demonstrate the superiority of the proposed method compared to the state-of-the-art methods.
机译:Hyperspectral Unmixing(Hu)是一种用于利用远程感测的高光谱数据的重要技术,其旨在估算一系列称为endmembers及其相应比例的谱签名,称为丰富。 Hu的性能通常受到高光谱图像(HSIS)中存在的各种噪声的严重降级。现有的大多数稳健的HU方法基于假设噪声或​​异常值仅存在一种配方中,例如带噪声或像素噪声。然而,在真实的应用中,HSIS不可避免地被嘈杂的乐队和嘈杂像素同时损坏,这在空间尺寸和光谱尺寸中需要鲁棒HU。同时,丰富的稀疏性是HSI的固有特性,HSI中的不同地区可能在位置具有各种稀疏水平。本文提出了一种基于对的基于空间的空间光谱韧性稀疏性 - 正规化的解密模型,以实现同时丰富的2D鲁布利和自适应加权稀疏性约束。所提出的模型的更新规则是通过半二次技术实现和执行的有效。通过合成和实际高光谱数据获得的实验结果证明了与最先进的方法相比所提出的方法的优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号