首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >A Novel Radiometric Control Set Sample Selection Strategy for Relative Radiometric Normalization of Multitemporal Satellite Images
【24h】

A Novel Radiometric Control Set Sample Selection Strategy for Relative Radiometric Normalization of Multitemporal Satellite Images

机译:多型卫星图像相对辐射归尺度的一种新型辐射测量控制集样策略

获取原文
获取原文并翻译 | 示例

摘要

This article presents a new relative radiometric normalization (RRN) method for multitemporal satellite images based on the automatic selection and multistep optimization of the radiometric control set samples (RCSS). A novel image-fusion strategy based on the fast local Laplacian filter is employed to generate a difference index using the complementary information extracted from the change vector analysis and absolute gradient difference of the bitemporal satellite images. The difference index is then segmented into changed and unchanged pixels using a fast level-set method. A novel local outlier method is then applied to the unchanged pixels of the bitemporal images to identify the initial RCSS, which are then scored by a novel unchanged purity index, and the histogram of the scores is used to produce the final RCSS. The RRN between the bitemporal images is achieved by adjusting the subject image to the reference image using orthogonal linear regression on the final RCSS. The proposed method is applied to seven different data sets comprised of bitemporal images acquired by various satellites, including Landsat TM/ETM+, Sentinel 2B, Worldview 2/3, and Aster. The experimental results show that the method outperforms the stateof-the-art RRN methods. It reduces the average root-mean-square error (RMSE) of the best baseline method (IR-MAD) by up to 32% considering all data sets.
机译:本文基于辐射控制集样本(RCSS)的自动选择和多步优化,提出了一种新的相对辐射归一化(RRN)方法,用于多型卫星图像进行多型卫星图像。采用基于快速局部拉普拉斯滤波器的新颖的图像融合策略来使用从更换向量分析和比特卫星图像的绝对梯度差中提取的互补信息来产生差异索引。然后使用快速级别方法将差异索引分段为改变和不变的像素。然后将新的本地异常传递方法应用于比特信图像的不变像素以识别初始RCS,然后通过新颖的不变纯度索引进行评分,并且分数的直方图用于产生最终的RCSS。通过在最终RCS上使用正交线性回归来通过将对象图像调整到参考图像来实现比特仪图像之间的RRN。所提出的方法应用于由各种卫星获取的六个不同的数据集,包括各种卫星获取的磅扑型图像,包括Landsat TM / ETM +,Sentinel 2B,WorldView 2/3和Aster。实验结果表明,该方法优于最通式的RRN方法。考虑所有数据集,它将最佳基线方法(IR-MAD)的平均根均方误差(RMSE)降低到32%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号