首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Object Detection in High-Resolution Panchromatic Images Using Deep Models and Spatial Template Matching
【24h】

Object Detection in High-Resolution Panchromatic Images Using Deep Models and Spatial Template Matching

机译:使用深层模型和空间模板匹配的高分辨率平面图像中的对象检测

获取原文
获取原文并翻译 | 示例

摘要

Automatic object detection from remote sensing images has attracted a significant attention due to its importance in both military and civilian fields. However, the low confidence of the candidates restricts the recognition of potential objects, and the unreasonable predicted boxes result in false positives (FPs). To address these issues, an accurate and fast object detection method called the refined single-shot multibox detector (RSSD) is proposed, consisting of a single-shot multibox detector (SSD), a refined network (RefinedNet), and a class-specific spatial template matching (STM) module. In the training stage, fed with augmented samples in diverse variation, the SSD can efficiently extract multiscale features for object classification and location. Meanwhile, RefinedNet is trained with cropped objects from the training set to further enhance the ability to distinguish each class of objects and the background. Class-specific spatial templates are also constructed from the statistics of objects of each class to provide reliable object templates. During the test phase, RefinedNet improves the confidence of potential objects from the predicted results of SSD and suppresses that of the background, which promotes the detection rate. Furthermore, several grotesque candidates are rejected by the well-designed class-specific spatial templates, thus reducing the false alarm rate. These three parts constitute a monolithic architecture, which contributes to the detection accuracy and maintains the speed. Experiments on high-resolution panchromatic (PAN) images of satellites GaoFen-2 and JiLin-1 demonstrate the effectiveness and efficiency of the proposed modules and the whole framework.
机译:由于其在军事和平民的重要性,遥感图像的自动对象检测引起了重要的关注。然而,候选人的低置信度限制了对潜在物体的识别,并且不合理的预测箱会导致误报(FPS)。为了解决这些问题,提出了一种准确和快速的物体检测方法,称为精制的单次多杆探测器(RSSD),由单次Multibox探测器(SSD),精细网络(RefinineNet)和特定于类组成空间模板匹配(STM)模块。在培训阶段,在不同变化中使用增强样本,SSD可以有效地提取对象分类和位置的多尺度特征。同时,RefinineNet培训,训练来自培训集中的裁剪对象,以进一步增强区分每类对象和背景的能力。类特定的空间模板也由每个类对象的统计数据构成,以提供可靠的对象模板。在测试阶段,RefinineNet从SSD的预测结果中提高了潜在物体的置信度,并抑制了促进检测率的背景。此外,通过精心设计的类特定的空间模板拒绝几个怪异的候选者,从而降低了误报率。这三个部分构成了单片架构,这有助于检测精度并保持速度。高分辨率Panchromatic(PAN)图像的实验Gaofen-2和Jilin-1展示了所提出的模块和整个框架的有效性和效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号