首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Infrared Small Target Detection via Low-Rank Tensor Completion With Top-Hat Regularization
【24h】

Infrared Small Target Detection via Low-Rank Tensor Completion With Top-Hat Regularization

机译:红外小目标通过低级张力完成与顶帽正则化

获取原文
获取原文并翻译 | 示例

摘要

Infrared small target detection technology is one of the key technologies in the field of computer vision. In recent years, several methods have been proposed for detecting small infrared targets. However, the existing methods are highly sensitive to challenging heterogeneous backgrounds, which are mainly due to: 1) infrared images containing mostly heavy clouds and chaotic sea backgrounds and 2) the inefficiency of utilizing the structural prior knowledge of the target. In this article, we propose a novel approach for infrared small target detection in order to take both the structural prior knowledge of the target and the self-correlation of the background into account. First, we construct a tensor model for the high-dimensional structural characteristics of multiframe infrared images. Second, inspired by the low-rank background and morphological operator, a novel method based on low-rank tensor completion with top-hat regularization is proposed, which integrates low-rank tensor completion and a ring top-hat regularization into our model. Third, a closed solution to the optimization algorithm is given to solve the proposed tensor model. Furthermore, the experimental results from seven real infrared sequences demonstrate the superiority of the proposed small target detection method. Compared with traditional baseline methods, the proposed method can not only achieve an improvement in the signal-to-clutter ratio gain and background suppression factor but also provide a more robust detection model in situations with low false-positive rates.
机译:红外小目标检测技术是计算机视野领域的关键技术之一。近年来,已经提出了几种方法来检测小红外目标。然而,现有方法对具有挑战性的异构背景是高度敏感的,这主要是由于:1)含有大多数重度云和混沌海背景的红外图像和2)利用目标的结构先验知识的低效率。在本文中,我们提出了一种用于红外小型目标检测的新方法,以便考虑到目标的结构先验知识和背景的自相关。首先,我们构建一个张量模型,用于多帧红外图像的高维结构特征。其次,由低排名背景和形态操作员的启发,提出了一种基于低级张力完成与顶帽正则化的新型方法,将低级张力完成和环顶帽正则化整合到我们的模型中。第三,给出了对优化算法的封闭解决方案来解决所提出的张量模型。此外,七个真正红外序列的实验结果表明了所提出的小目标检测方法的优越性。与传统的基线方法相比,所提出的方法不仅可以实现信号到杂波比增益和背景抑制因子的改进,而且还在具有低假阳性速率的情况下提供更强大的检测模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号