首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Multiscale Dynamic Graph Convolutional Network for Hyperspectral Image Classification
【24h】

Multiscale Dynamic Graph Convolutional Network for Hyperspectral Image Classification

机译:多尺度动态图卷积网络用于高光谱图像分类

获取原文
获取原文并翻译 | 示例

摘要

Convolutional neural network (CNN) has demonstrated impressive ability to represent hyperspectral images and to achieve promising results in hyperspectral image classification. However, traditional CNN models can only operate convolution on regular square image regions with fixed size and weights, and thus, they cannot universally adapt to the distinct local regions with various object distributions and geometric appearances. Therefore, their classification performances are still to be improved, especially in class boundaries. To alleviate this shortcoming, we consider employing the recently proposed graph convolutional network (GCN) for hyperspectral image classification, as it can conduct the convolution on arbitrarily structured non-Euclidean data and is applicable to the irregular image regions represented by graph topological information. Different from the commonly used GCN models that work on a fixed graph, we enable the graph to be dynamically updated along with the graph convolution process so that these two steps can be benefited from each other to gradually produce the discriminative embedded features as well as a refined graph. Moreover, to comprehensively deploy the multiscale information inherited by hyperspectral images, we establish multiple input graphs with different neighborhood scales to extensively exploit the diversified spectral-spatial correlations at multiple scales. Therefore, our method is termed multiscale dynamic GCN (MDGCN). The experimental results on three typical benchmark data sets firmly demonstrate the superiority of the proposed MDGCN to other state-of-the-art methods in both qualitative and quantitative aspects.
机译:卷积神经网络(CNN)表明了代表高光谱图像的令人印象深刻的能力,并且在高光谱图像分类中实现有前途的结果。然而,传统的CNN模型只能在具有固定尺寸和重量的规则方形图像区域上运行卷积,因此,它们不能普遍适应具有各种对象分布和几何外观的不同的局部区域。因此,仍然需要改善其分类性能,尤其是在阶级边界中。为了减轻这种缺点,我们考虑采用最近提出的图表卷积网络(GCN)进行高光谱图像分类,因为它可以在任意结构的非欧几里德数据上进行卷积,并且适用于图形拓扑信息所示的不规则图像区域。不同于在固定图表上工作的常用GCN模型,我们使图形能够与图形卷积过程一起动态更新,以便这两个步骤可以彼此受益,以逐渐产生鉴别的嵌入功能以及一个精制图。此外,为了全面地部署由高光谱图像继承的多尺度信息,我们建立了具有不同邻域缩放的多个输入图,以广泛利用多个尺度的多样化光谱空间相关性。因此,我们的方法被称为多尺度动态GCN(MDGCN)。在三种典型的基准数据集中的实验结果牢固地证明了在定性和定量方面的其他最先进方法中提出的MDGCN的优越性。

著录项

  • 来源
  • 作者单位

    Nanjing Univ Sci & Technol Nanjing 210094 Peoples R China|Nanjing Univ Sci & Technol Minist Educ Key Lab Intelligent Percept & Syst High Dimens In Nanjing 210094 Peoples R China|Xidian Univ State Key Lab Integrated Serv Networks Xian 710071 Peoples R China;

    Nanjing Univ Sci & Technol Nanjing 210094 Peoples R China|Nanjing Univ Sci & Technol Minist Educ Key Lab Intelligent Percept & Syst High Dimens In Nanjing 210094 Peoples R China|Xidian Univ State Key Lab Integrated Serv Networks Xian 710071 Peoples R China;

    Natl Univ Def Technol Natl Key Lab Sci & Technol ATR Changsha 410073 Peoples R China;

    Wuhan Univ Sch Comp Sci Wuhan 430079 Peoples R China;

    Wuhan Univ Sch Comp Sci Wuhan 430079 Peoples R China;

    Nanjing Univ Sci & Technol Nanjing 210094 Peoples R China|Nanjing Univ Sci & Technol Minist Educ Key Lab Intelligent Percept & Syst High Dimens In Nanjing 210094 Peoples R China|Nanjing Univ Sci & Technol Jiangsu Key Lab Image & Video Understanding Socia Nanjing 210094 Peoples R China|Nanjing Univ Sci & Technol Sch Comp Sci & Engn Nanjing 210094 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Hyperspectral imaging; Convolution; Feature extraction; Kernel; Support vector machines; Training; Dynamic graph; graph convolutional network (GCN); hyperspectral image classification; multiscale information;

    机译:高光谱成像;卷积;特征提取;内核;支持矢量机;训练;动态图;图形卷积网络(GCN);高光谱图像分类;多尺度信息;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号