首页> 外文期刊>IEEE Geoscience and Remote Sensing Letters >Spectral–Spatial Graph Convolutional Networks for Semisupervised Hyperspectral Image Classification
【24h】

Spectral–Spatial Graph Convolutional Networks for Semisupervised Hyperspectral Image Classification

机译:光谱-空间图卷积网络用于半监督高光谱图像分类

获取原文
获取原文并翻译 | 示例

摘要

Collecting labeled samples is quite costly and time-consuming for hyperspectral image (HSI) classification task. Semisupervised learning framework, which combines the intrinsic information of labeled and unlabeled samples, can alleviate the deficient labeled samples and increase the accuracy of HSI classification. In this letter, we propose a novel semisupervised learning framework that is based on spectral-spatial graph convolutional networks (S(2)GCNs). It explicitly utilizes the adjacency nodes in graph to approximate the convolution. In the process of approximate convolution on graph, the proposed method makes full use of the spatial information of the current pixel. The experimental results on three real-life HSI data sets, i.e., Botswana Hyperion, Kennedy Space Center, and Indian Pines, show that the proposed S(2)GCN can significantly improve the classification accuracy. For instance, the overall accuracy on Indian data is increased from 66.8% (GCN) to 91.6%.
机译:对于高光谱图像(HSI)分类任务,收集带标签的样本非常昂贵且耗时。半监督学习框架结合了标记和未标记样本的内在信息,可以缓解标记不足的样本并提高HSI分类的准确性。在这封信中,我们提出了一种基于谱空间图卷积网络(S(2)GCN)的新型半监督学习框架。它显式地利用图中的邻接节点来近似卷积。在图的近似卷积过程中,该方法充分利用了当前像素的空间信息。在博茨瓦纳海波龙,肯尼迪航天中心和印度松树这三个真实的HSI数据集上的实验结果表明,提出的S(2)GCN可以显着提高分类准确性。例如,印度数据的整体准确性从66.8%(GCN)提高到91.6%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号