机译:基于Deep Cnns的SAR目标识别中的哪些内容,以及如何传输
Chinese Acad Sci Aerosp Informat Res Inst Beijing 100094 Peoples R China|Univ Chinese Acad Sci Beijing 101408 Peoples R China|Chinese Acad Sci Key Lab Technol Geospatial Informat Proc & Applic Beijing 100190 Peoples R China;
Chinese Acad Sci Aerosp Informat Res Inst Beijing 100094 Peoples R China|Univ Chinese Acad Sci Beijing 101408 Peoples R China|Chinese Acad Sci Key Lab Technol Geospatial Informat Proc & Applic Beijing 100190 Peoples R China;
Chinese Acad Sci Aerosp Informat Res Inst Beijing 100094 Peoples R China|Univ Chinese Acad Sci Beijing 101408 Peoples R China|Chinese Acad Sci Key Lab Technol Geospatial Informat Proc & Applic Beijing 100190 Peoples R China;
Synthetic aperture radar; Task analysis; Target recognition; Optical sensors; Remote sensing; Optical imaging; Radar polarimetry; Deep convolutional neural networks (DCNN); domain adaptation; synthetic aperture radar (SAR) target recognition; transfer learning;
机译:基于L2正则化的传输MS-CNN的鲁棒SAR自动目标识别
机译:FEC:基于电磁散射特征和深层CNN特征的SAR目标识别特征融合框架
机译:垃圾邮件:基于CNN的SAR目标识别网络,具有姿势角度边缘化学习
机译:深层CNN模型SAR目标识别正规化技术研究
机译:使用MSTAR数据库分析目标识别中的CNN算法
机译:基于L2正则化转移MS-CNN的鲁棒SAR自动目标识别
机译:基于Deep Cnns的SAR目标识别中的哪些内容,以及如何传输
机译:利用声纳和合成孔径雷达(saR)数据开发和演示基于实时小波的自动目标识别