首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Pansharpening for Cloud-Contaminated Very High-Resolution Remote Sensing Images
【24h】

Pansharpening for Cloud-Contaminated Very High-Resolution Remote Sensing Images

机译:云污染了非常高分辨率遥感图像的泛甘蓝

获取原文
获取原文并翻译 | 示例

摘要

The optical remote sensing images not only have to make a fundamental tradeoff between the spatial and spectral resolutions, but also are inevitable to be polluted by the clouds; however, the existing pansharpening methods mainly focus on the resolution enhancement of the optical remote sensing images without cloud contamination. How to fuse the cloud-contaminated images to achieve the joint resolution enhancement and cloud removal is a promising and challenging work. In this paper, a pansharpening method for the challenging cloud-contaminated very high-resolution remote sensing images is proposed. Furthermore, the cloud-contaminated conditions for the practical observations with all the thick clouds, the thin clouds, the haze, and the cloud shadows are comprehensively considered. In the proposed methods, a two-step fusion framework based on multisource and multitemporal observations is presented: 1) the thin clouds, the haze, and the light cloud shadows are proposed to be first jointly removed and 2) a variational-based integrated fusion model is then proposed to achieve the joint resolution enhancement and missing information reconstruction for the thick clouds and dark cloud shadows. Through the proposed fusion method, a promising cloud-free fused image with both high spatial and high spectral resolutions can be obtained. To comprehensively test and verify the proposed method, the experiments were implemented based on both the cloud-free and cloud-contaminated images, and a number of different remote sensing satellites including the IKONOS, the QuickBird, the Jilin (JL)-1, and the Deimos-2 images were utilized. The experimental results confirm the effectiveness of the proposed method.
机译:光学遥感图像不仅必须在空间和光谱分辨率之间进行基本的权衡,而且不可避免地被云污染;然而,现有的泛汉语方法主要关注解决光学遥感图像的分辨率而没有云污染。如何保险熔断云污染的图像以实现联合分辨率的增强和云移除是一个有前途和挑战性的工作。本文提出了一种挑战云污染的非常高分辨率遥感图像的泛散形方法。此外,全面考虑了与所有厚云,薄云,雾度和云阴影的实际观测的云污染的条件。在所提出的方法中,提出了一种基于多源和多型观测的两步融合框架:1)提出了薄的云,雾霾和光云阴影,首先联合移除,2)基于变分的集成融合然后提出了模型来实现厚云和暗云阴影的联合分辨率增强和缺少信息重建。通过所提出的融合方法,可以获得具有高空间和高光谱分辨率的有前途的无云融合图像。为了综合测试和验证所提出的方法,实验是基于无云和云污染的图像实现的,以及包括Ikonos,Quickbird,Jilin(JL)-1的许多不同的遥感卫星,以及使用Deimos-2图像。实验结果证实了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号