首页> 外文期刊>Concurrency, practice and experience >Pansharpening multispectral remote-sensing images withguided filter formonitoring impact of human behavior on environment
【24h】

Pansharpening multispectral remote-sensing images withguided filter formonitoring impact of human behavior on environment

机译:Pansharpening多光谱遥感图像引导筛选人类行为对环境的影响

获取原文
获取原文并翻译 | 示例

摘要

Human behavior would lead to a significant impact on the environment. By monitoring the environment, we can indirectly monitor human behavior. Remote sensing (RS) technology provides a large number of multispectral (MS) images. When combining the Internet of things (IoT) technology, those images can be used for human behavioral monitoring. However, due to the limitation of the optical sensors embedded in satellites, the spatial resolution of MS image is relatively low, which poses a huge problem for further understanding these images. Pansharpening, also known as multisensor image fusion, aims to sharp an MS image to a high-resolution multisensor image (HMS) by integrating a corresponding high-resolution panchromatic (PAN) image. By doing so, the redundancy among big data can be effectively reduced. Traditional Intensity-Hue-Saturation (IHS)-based methods often suffer from spectral distortion. To address this problem, a novel pansharpening method is proposed in this paper. Different from those traditional IHS methods, the proposed method first decomposes MS and PAN into high-frequency-component (HFC) and low-frequency-component (LFC), respectively. Then, the guided filter (GF) is utilized to enhance the spectral information on the detail map. Furthermore, the detail map is refined according to the adaptive coefficients for each band of MS. By performing experiments, we demonstrate the proposed method can obtain satisfying results in both visual quality and object assessment among existing methods.
机译:人类行为将导致对环境的重大影响。通过监测环境,我们可以间接监测人类行为。遥感(RS)技术提供大量多光谱(MS)图像。结合物联网(IOT)技术时,这些图像可用于人行为行为监测。然而,由于嵌入在卫星中的光学传感器的限制,MS图像的空间分辨率相对较低,这对进一步理解这些图像构成了大问题。 Pansharpening,也称为多传感器图像融合,旨在通过集成相应的高分辨率平板图像图像来将MS图像锐化到高分辨率多传感器图像(HMS)。通过这样做,可以有效地减少大数据之间的冗余。基于传统的强度 - 色调饱和度(IHS)的方法经常遭受光谱失真。为了解决这个问题,本文提出了一种新颖的泛黄砂方法。与传统的IHS方法不同,该方法首先将MS和PAN​​分解为高频 - 分量(HFC)和低频 - 组件(LFC)。然后,利用引导滤波器(GF)来增强细节图的光谱信息。此外,根据MS的每个频带的自适应系数来改进细节图。通过执行实验,我们证明了所提出的方法可以获得现有方法中的视觉质量和对象评估的令人满意。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号