首页> 外文期刊>Geoscience and Remote Sensing, IEEE Transactions on >Pansharpening of Multispectral Images Based on Nonlocal Parameter Optimization
【24h】

Pansharpening of Multispectral Images Based on Nonlocal Parameter Optimization

机译:基于非局部参数优化的多光谱图像全锐化

获取原文
获取原文并翻译 | 示例

摘要

High-quality pansharpened multispectral (MS) images are rarely obtained from fast, efficient, and robust algorithms. In most cases, effective pansharpening methods have huge computational complexity, as in the case of variational methods, or algorithms based on sparse representations. Moreover, injection models are often application dependent, not sufficiently general to be applied to different scenarios, and the resulting algorithm implementations cannot process large-size images. The proposed pansharpening method is accurate and fast and can be successfully applied to huge images. It also solves the problem of context-adaptive schemes that tune the spatial injection parameters on local statistics: Instabilities and blocky artifacts can be generated by pansharpening methods whose parameters are computed on local windows. The proposed method is an extension of the classical component-substitution algorithms: An optimal detail image (in the mmse sense) extracted from the panchromatic band is calculated for each MS band by evaluating band-dependent generalized intensities. It overcomes window-based local estimation of parameters by applying a nonlocal parameter optimization through $K$-means clustering. Very high quality scores, both at degraded and full scale, and excellent visual quality of the fused images demonstrate the validity of the method.
机译:高质量的全锐化多光谱(MS)图像很少通过快速,高效和强大的算法获得。在大多数情况下,像变分方法或基于稀疏表示的算法一样,有效的全锐化方法具有巨大的计算复杂性。此外,注入模型通常依赖于应用程序,不足以适用于不同情况,因此生成的算法实现无法处理大尺寸图像。提出的泛锐化方法准确,快速,可以成功应用于大图像。它还解决了上下文匹配方案的问题,该方案可根据局部统计量调整空间注入参数:不稳定和块状伪影可以通过泛化方法生成,这些方法的参数在局部窗口上计算。所提出的方法是经典分量替换算法的扩展:通过评估与频带相关的广义强度,为每个MS频带计算从全色频带中提取的最佳细节图像(在mmse意义上)。通过通过 $ K $ -均值聚类应用非局部参数优化,它克服了基于窗口的局部参数估计。无论是在降级还是在满刻度下,其质量得分都很高,融合图像的视觉质量也很好,证明了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号