首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Adaptive Ground Clutter Reduction in Ground-Penetrating Radar Data Based on Principal Component Analysis
【24h】

Adaptive Ground Clutter Reduction in Ground-Penetrating Radar Data Based on Principal Component Analysis

机译:基于主成分分析的探地雷达数据自适应地杂波抑制

获取原文
获取原文并翻译 | 示例

摘要

Singular value decomposition is an effective way to remove ground clutter in ground-penetrating radar (GPR) applications. The main limitation of this method is the selection of principal components to completely reconstruct the ground clutter or the target. To date, no effective criteria or technology have been developed. To solve this problem, a new method is proposed in this paper. The research and analysis presented herein reveal that the root-mean-square height (RMSH) of the first-arrival curve corresponding to the ground clutter has a well-defined positive relationship with the number of singular values associated with the principal components of the ground clutter. The number of singular values of these principal components (N) can be precisely determined based on the ground clutter by a linear function, N = 0.2634D + 1.3086, where D represents the RMSH value. In addition, an algorithm called developed histogram equalization was developed to improve the contrast to highlight the targets in denoized GPR data sets. The proposed strategy of extracting the principal components of the ground clutter and highlighting the contrast between the target signal and environmental reflections was successfully applied to the field GPR data, thus demonstrating the practicality and validity of the proposed approach.
机译:奇异值分解是在探地雷达(GPR)应用中消除地面杂波的有效方法。该方法的主要局限性在于选择主要成分以完全重建地面杂波或目标。迄今为止,尚未开发出有效的标准或技术。为了解决这个问题,本文提出了一种新的方法。本文提供的研究和分析表明,对应于地面杂波的第一条到达曲线的均方根高度(RMSH)与与地面主要成分相关的奇异值的数量具有明确定义的正关系混乱。这些主分量的奇异值(N)的数量可以根据地面杂波通过线性函数N = 0.2634D + 1.3086精确确定,其中D表示RMSH值。此外,开发了一种称为发达直方图均衡的算法,以改善对比度,以突出显示去噪的GPR数据集中的目标。提出的提取地面杂波主要成分并突出目标信号与环境反射之间的对比度的策略已成功应用于野外GPR数据,从而证明了该方法的实用性和有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号