首页> 外文会议>Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XX >Leveraging Robust Principal Component Analysis To Detect Buried Explosive Threats In Handheld Ground-Penetrating Radar Data
【24h】

Leveraging Robust Principal Component Analysis To Detect Buried Explosive Threats In Handheld Ground-Penetrating Radar Data

机译:利用稳健的主成分分析来检测穿透地面的雷达数据中的潜在爆炸威胁

获取原文
获取原文并翻译 | 示例

摘要

A goal of ground penetrating radar (GPR) preprocessing is to distinguish background from data containing explosive threats. This is commonly achieved by performing depth-dependent mean and standard deviation normalization, where the mean and standard deviation are computed on background data. Under the assumption that data with explosive threats have different statistical characteristics than the background/clutter, after normalization explosive threat data will have larger absolute normalized scores than the background/clutter. An underlying problem is determining which data to compute the background mean and standard deviation statistics over. Often the background statistics are computed over a moving window, which is centered at the location of interest and has a predetermined guard band, a region of data that is ignored. However, buried explosive threats vary considerably in their shapes and more importantly sizes subsequently, the size of the GPR responses from these objects are considerably varied. We examine a number of additional detection methods that utilize Robust Principal Component Analysis (RPCA), where RPCA decomposes the data into low-rank and sparse components. Intuitively, the low-rank component should capture the background data and the sparse should capture the anomalous explosive threat response. We find that detection performance using energy- and shape-based detection algorithms improves when using RPCA preprocessing.
机译:探地雷达(GPR)预处理的目标是将背景与包含爆炸性威胁的数据区分开。通常通过执行深度相关的均值和标准差归一化来实现,其中均值和标准差是在背景数据上计算的。在具有爆炸性威胁的数据具有与背景/杂波不同的统计特性的假设下,归一化后,爆炸性威胁数据的绝对归一化分数将大于背景/杂波。潜在的问题是确定要计算背景均值和标准差统计量的数据。通常,背景统计信息是在一个移动窗口上计算的,该窗口以感兴趣的位置为中心并具有预定的保护带,该区域被忽略。但是,掩埋的爆炸威胁的形状各不相同,更重要的是其大小,随后,来自这些物体的GPR响应的大小也各不相同。我们研究了许多利用稳健主成分分析(RPCA)的其他检测方法,其中RPCA将数据分解为低秩和稀疏成分。凭直觉,低级人员应捕获背景数据,而稀疏人员应捕获异常爆炸威胁响应。我们发现,使用RPCA预处理时,使用基于能量和基于形状的检测算法可以提高检测性能。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号