首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing. >Total Variation Regularized Collaborative Representation Clustering With a Locally Adaptive Dictionary for Hyperspectral Imagery
【24h】

Total Variation Regularized Collaborative Representation Clustering With a Locally Adaptive Dictionary for Hyperspectral Imagery

机译:具有高光谱图像局部自适应字典的总变化正则化协同表示聚类

获取原文
获取原文并翻译 | 示例

摘要

Clustering is a very challenging task for hyperspectral imagery (HSI) because of the complex spectral–spatial structures found in such data. Recently, the sparse recovery-based approaches have been introduced to deal with hyperspectral clustering, and have achieved state-of-the-art performances. Several recent works have shown that it is the collaborative representation mechanism over all the dictionary atoms, rather than the sparse constraint that determines the recognition performance. Based on this fact, in this paper, we focus on the working mechanism of collaborative representation to explore its potential in HSI clustering. However, directly introducing collaborative representation clustering (CRC) to HSIs results in several problems, i.e., the high redundancy of the global dictionary atoms and the absence of spatial information, which greatly limit the clustering performance. In view of this, we propose a novel total variation regularized CRC with a locally adaptive dictionary (TV-CRC-LAD) algorithm for HSI. First, the LAD construction strategy is introduced instead of the global dictionary to relieve the high redundancy and the interference of unrelated atoms in the representation process, to more precisely represent each pixel only with the highly correlated atoms. Second, TV regularization is integrated to better account for the rich spatial-contextual information and promotes the piecewise smoothness of the HSI clustering result. The proposed algorithm was tested on three widely used hyperspectral data sets, and the experimental results clearly illustrate that the proposed algorithm outperforms the corresponding sparsity-based clustering methods and the other state-of-the-art methods.
机译:由于高光谱图像(HSI)中存在复杂的光谱空间结构,因此聚类是一项非常具有挑战性的任务。最近,引入了基于稀疏恢复的方法来处理高光谱聚类,并获得了最先进的性能。最近的一些工作表明,是所有词典原子上的协作表示机制,而不是稀疏约束决定了识别性能。基于这一事实,在本文中,我们将重点放在协作表示的工作机制上,以探索其在HSI聚类中的潜力。然而,直接将协作表示聚类(CRC)引入HSI会导致一些问题,即全局词典原子的高冗余度和缺少空间信息,这极大地限制了聚类性能。有鉴于此,我们针对HSI提出了一种具有局部自适应字典(TV-CRC-LAD)算法的新型总变化正则CRC。首先,引入LAD构造策略代替全局字典,以减轻表示过程中的高冗余度和无关原子的干扰,从而更精确地仅用高度相关原子表示每个像素。其次,整合电视正则化可以更好地说明丰富的空间上下文信息,并提高HSI聚类结果的分段平滑度。该算法在三个广泛使用的高光谱数据集上进行了测试,实验结果清楚地表明,该算法优于相应的基于稀疏性的聚类方法和其他最新方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号