首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Hyperspectral Image Classification in the Presence of Noisy Labels
【24h】

Hyperspectral Image Classification in the Presence of Noisy Labels

机译:带有噪声标签的高光谱图像分类

获取原文
获取原文并翻译 | 示例

摘要

Label information plays an important role in a supervised hyperspectral image classification problem. However, current classification methods all ignore an important and inevitable problem-labels may be corrupted and collecting clean labels for training samples is difficult and often impractical. Therefore, how to learn from the database with noisy labels is a problem of great practical importance. In this paper, we study the influence of label noise on hyperspectral image classification and develop a random label propagation algorithm (RLPA) to cleanse the label noise. The key idea of RLPA is to exploit knowledge (e.g., the superpixel-based spectral-spatial constraints) from the observed hyperspectral images and apply it to the process of label propagation. Specifically, the RLPA first constructs a spectral-spatial probability transform matrix (SSPTM) that simultaneously considers the spectral similarity and superpixel-based spatial information. It then randomly chooses some training samples as "clean" samples and sets the rest as unlabeled samples, and propagates the label information from the "clean" samples to the rest unlabeled samples with the SSPTM. By repeating the random assignment (of "clean" labeled samples and unlabeled samples) and propagation, we can obtain multiple labels for each training sample. Therefore, the final propagated label can be calculated by a majority vote algorithm. Experimental studies show that the RLPA can reduce the level of noisy label and demonstrates the advantages of our proposed method over four major classifiers with a significant margin-the gains in terms of the average overall accuracy, average accuracy, and kappa are impressive, e.g., 9.18%, 9.58%, and 0.1043. The MATLAB source code is available at https://github.com/junjun-jiang/RLPA.
机译:标签信息在有监督的高光谱图像分类问题中起着重要作用。但是,当前的分类方法都忽略了重要且不可避免的问题标签,这些标签可能已损坏,并且为训练样本收集干净的标签非常困难,而且通常不切实际。因此,如何从带有噪声标签的数据库中学习是非常重要的问题。在本文中,我们研究了标签噪声对高光谱图像分类的影响,并开发了一种随机标签传播算法(RLPA)来清除标签噪声。 RLPA的关键思想是从观察到的高光谱图像中利用知识(例如,基于超像素的光谱空间约束),并将其应用于标签传播过程。具体而言,RLPA首先构建频谱空间概率变换矩阵(SSPTM),该矩阵同时考虑频谱相似性和基于超像素的空间信息。然后,它随机选择一些训练样本作为“干净”样本,并将其余训练样本设置为未标记样本,并使用SSPTM将标签信息从“干净”样本传播到其余未标记样本。通过重复随机分配(“干净”标记的样本和未标记的样本)和传播,我们可以为每个训练样本获得多个标记。因此,可以通过多数投票算法来计算最终的传播标签。实验研究表明,RLPA可以减少噪声标签的水平,并证明了我们提出的方法在四个主要分类器上的优势,并且具有显着的余量-平均总准确度,平均准确度和kappa的增加令人印象深刻,例如, 9.18%,9.58%和0.1043。可从https://github.com/junjun-jiang/RLPA获得MATLAB源代码。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号