首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing. >Learning Source-Invariant Deep Hashing Convolutional Neural Networks for Cross-Source Remote Sensing Image Retrieval
【24h】

Learning Source-Invariant Deep Hashing Convolutional Neural Networks for Cross-Source Remote Sensing Image Retrieval

机译:学习源不变的深度哈希卷积神经网络进行跨源遥感图像检索

获取原文
获取原文并翻译 | 示例

摘要

Due to the urgent demand for remote sensing big data analysis, large-scale remote sensing image retrieval (LSRSIR) attracts increasing attention from researchers. Generally, LSRSIR can be divided into two categories as follows: uni-source LSRSIR (US-LSRSIR) and cross-source LSRSIR (CS-LSRSIR). More specifically, US-LSRSIR means the inquiry remote sensing image and images in the searching data set come from the same remote sensing data source, whereas CS-LSRSIR is designed to retrieve remote sensing images with a similar content to the inquiry remote sensing image that are from a different remote sensing data source. In the literature, US-LSRSIR has been widely exploited, but CS-LSRSIR is rarely discussed. In practical situations, remote sensing images from different kinds of remote sensing data sources are continually increasing, so there is a great motivation to exploit CS-LSRSIR. Therefore, this paper focuses on CS-LSRSIR. To cope with CS-LSRSIR, this paper proposes source-invariant deep hashing convolutional neural networks (SIDHCNNs), which can be optimized in an end-to-end manner using a series of well-designed optimization constraints. To quantitatively evaluate the proposed SIDHCNNs, we construct a dual-source remote sensing image data set that contains eight typical land-cover categories and 10 000 dual samples in each category. Extensive experiments show that the proposed SIDHCNNs can yield substantial improvements over several baselines involving the most recent techniques.
机译:由于对遥感大数据分析的迫切需求,大规模遥感图像检索(LSRSIR)引起了研究人员的越来越多的关注。通常,LSRSIR可以分为以下两类:单源LSRSIR(US-LSRSIR)和跨源LSRSIR(CS-LSRSIR)。更具体地说,US-LSRSIR表示查询遥感图像和搜索数据集中的图像来自同一遥感数据源,而CS-LSRSIR旨在检索内容与查询遥感图像相似的遥感图像,来自不同的遥感数据源。在文献中,US-LSRSIR得到了广泛利用,但很少讨论CS-LSRSIR。在实际情况下,来自不同种类遥感数据源的遥感图像在不断增加,因此有很大的动机去开发CS-LSRSIR。因此,本文重点介绍CS-LSRSIR。为了应对CS-LSRSIR,本文提出了源不变的深度哈希卷积神经网络(SIDHCNN),可以使用一系列精心设计的优化约束以端对端的方式对其进行优化。为了定量评估提出的SIDHCNN,我们构建了一个双源遥感图像数据集,其中包含八个典型的土地覆盖类别和每个类别中的10,000个双重样本。广泛的实验表明,所提出的SIDHCNN可以在涉及最新技术的几个基准上产生实质性的改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号