首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing. >Classification of Ocean Surface Slicks in Simulated Hybrid-Polarimetric SAR Data
【24h】

Classification of Ocean Surface Slicks in Simulated Hybrid-Polarimetric SAR Data

机译:模拟混合测压SAR数据中的海面浮油分类

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we consider hybrid-polarimetric synthetic aperture radar (SAR) data of ocean surface slicks, and hypothesize that we can design a system that is able to discriminate between mineral oil, plant oil, and clean sea. We focus particularly on challenges related to data set shift between the training and test data. In SAR images of ocean surfaces, data set shift is typically caused by the variation of wind level and incident angles that directly impact the backscatter intensities. We evaluate several classifiers, domain adaptation strategies, and multilooking strategies. Hybrid-polarimetric SAR data are simulated from the Radarsat-2 quad-pol images. The proposed methodology was trained using five different Radarsat-2 quad-pol images that cover slicks of known types, and tested on 10 different Radarsat-2 quad-pol images covering various ocean surface slicks. The results show that we were able, to a large degree, to classify the type of various surface slicks. The average classification accuracy obtained from cross-validation on the training data was 91%. The results also show that we were able to correctly classify surface slick in new test images, even if the wind, surface, and acquisition conditions were different from the training images. We conclude that hybrid polarity is an attractive mode for future enhanced SAR-based oil spill monitoring; however, to fully exploit the imaging mode, single-look complex images are necessary.
机译:在本文中,我们考虑了海洋表面浮油的混合极化合成孔径雷达(SAR)数据,并假设我们可以设计一个能够区分矿物油,植物油和洁净海的系统。我们特别关注与训练和测试数据之间的数据集转换相关的挑战。在海洋表面的SAR图像中,数据集的偏移通常是由风水平和入射角的变化直接导致反向散射强度引起的。我们评估几种分类器,领域适应策略和多视图策略。从Radarsat-2四极化图像模拟混合极化SAR数据。所提议的方法是使用五种覆盖已知类型浮油的不同Radarsat-2四极图像进行训练的,并在覆盖各种海洋浮油的10种不同Radarsat-2四极图像上进行了测试。结果表明,我们能够在很大程度上对各种表面浮油的类型进行分类。通过对训练数据进行交叉验证获得的平均分类精度为91%。结果还表明,即使风,表面和采集条件与训练图像不同,我们也能够在新的测试图像中正确分类表面光滑度。我们得出结论,混合极性是未来增强型基于SAR的溢油监测的一种有吸引力的模式。但是,要充分利用成像模式,必须具有单一外观的复杂图像。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号